DynaSched

A dynamic scheduler for HPC/AI/DA



Overview of the problem

 Utilization rates are falling
* DOE has taken notice at facilities such as NERSC
* Expected to see similar issues at Argonne, ORNL, LLNL
 Caused by increasing use of HPC machines for Al/DA and workflows

* Al/DA are dynamic environments
* Operation in HPC static scheduling requires allocating max probable resources
* Many resources frequently lie idle during execution

e Custom workflows are dynamic at heart

* Pursue DAG to solution
* Uncertain which branches will be taken, what resources will be used
* Must allocate max probable resources to avoid early termination

 Sole contact with scheduler is at time of submission
* Obtain allocation envelope of maximum possibly required size



Requirements (l)

* Dynamic scheduler

e Must support traditional HPC static operations

* Treat non-traditional workloads as first-class citizens
* No “islands” of allocation
* Rapid response to dynamic requests (avoid idling applications)

* Maximize utilization vs energy consumption
* Anticipatory vs reactive to minimize dead time

* Application driven environment
* App-system integration
* Application is full partner in determining allocation, migration, pre-emption,
delayed start, resources to pre-position
e Extends from scheduling stage throughout app lifecycle



Requirements (I1)

* Anticipatory launch

* Pre-position to anticipated launch regions
* Data, OS images, containers,...

* Inter-job energy management
* Power down, coast, power up,...?
* Learning to improve
* Allow sys admin to identify desired metrics

* Watch workloads vs metrics to improve scheduling algo and to better
predict/preposition required resources



Requirements (1)

* Broaden range of allocated resources
* Treat all resources used by applications as allocatable
* CPU, GPU, fabric, power, total energy, memory

* Broaden range of scheduling
* Allocation start/end
* Sequencing of apps (DAG), data position
* Static pipelines and dynamic branching



Requirements (V)

* Resilient

» Assets can appear/disappear without warning
* Degradation can occur
* Example: communication link noise

* Application classes
* Traditional HPC — static, bulk synchronous
Workflow HPC — execute DAG of apps
Data analytics — stream processing of extremely large data sets

Machine learning — training and inference, multiple algos (i.e., don’t fixate on
current DL approach!)

Dynamic analysis — population modeling, statistical analysis (dynamic resizing,
non-synchronous)



Assumptions

* Preemption is acceptable
* When needed for higher priority/more urgent applications
* Register preemption abilities
* Handshake requirements (if any)
* Ability/willingness to accept preemption
* App participates in preemption
* Handshake timing, recovery requirements

* Node sharing may be acceptable

* If we can provide adequate resource allocation and security walls between
users



Architectuﬂre

Job

Script
—

-

OpenMP

APP

MPI

N

DynaSched

~

Responses

/

Y
~

|
5

-

System

Management Stack

Orchestration
Requests '
PMIx

p——

=

~

Server ’

', L0

e

EABMMMIMIN

Tool Support



DynaSched LRH Scheduler

* Lagrangian objective function

* Combine constraints into objective function using time-dependent
parameters (Lagrangian multipliers)

* Maximize number of sessions completed
* Within specified time and energy constraints
* Must complete entire DAG of dependencies

* Receding horizon
* Optimal control method used in job shops
* Predict evolution of system for limited time into future
* Control based on prediction until next measurement of system state



Objective Function

T 100 TEC AET
ObiFn o, B, =0 — — —_— A —
jEntesBoy)=o7m =P ree Y

TEC = Total Energy Consumed Term for each constraint (will need to extend)
TSE = Total System Energy Initial multiplier values set by experiment
AET = Application Execution Time Adjust on the fly

a,B,y = Lagrangian multipliers [0,1], x+pB+Yy=1 Determine when to preempt

T = time constraint
T100 = number of sessions fully completed
T = number of sessions submitted



Methodology

* At each time step

* Collect set of all submissions that
* Meet all precedence constraints
* Adequate energy to execute at least minimum work
* Meet minimum resource constraints
Evaluate ObjFn for each submission
Order submissions based on ObjFn
Find first submission that can be scheduled within time horizon - map it

Continue until no additional submissions can be started within time horizon

* Increment time

* Recreate submission set
* New submissions, dynamic requests, session completions
* Proceed as above



Multiplier Adjustment

e Simple feedback controller

* Inputs
e Deviation from full utilization

* Current multipliers
* Some metric on sessions in queue and/or in execution?

* Historical behaviors?
* Outputs
* Updated multipliers

* Neural network controller
e Continuously train using queue metric, utilization?

e Output multipliers



My Role: Consultant

* Transfer knowledge
* LRH scheduler, possibly discuss adding NN integration
* PRRTE, PMIx code bases

» Setup platform for investigations
 Stable, robust PRRTE environment (pre-production ready)
 Stable, robust PMIx environment (production ready)

* DynaSched prototype

* Guide investigations

* Advise application team
 Actively participate in early investigations



Step 1: Enhance PRRTE for RM role

* Bootstrap backbone daemon network during cluster boot
» Security enhancements for privileged operation
* Deal with privileged-nonprivileged interactions

e Restore PRRTE daemon resilience

* Implement session instantiation procedure
* Fork/exec local daemon at user level
* Instant on wireup of session daemons

* General code cleanup
* Picky compiler, Coverity reports



Step 2: PRRTE scheduler “hooks”

* Reuse existing PMIx APIs where possible

* PMIx_Allocate_resources
 PMIx_Job_control

 Upward communication
* Relay allocation requests from apps
* Preemption registration from apps
e Resource inventory and changes in availability
e Changes in session status (terminate, etc)

e Downward communication

* Session instantiation/modification orders
* Pre-emption orders



Step 3: Simple “greedy” scheduler

* Priority based queueing system

* Take highest priority request that fits within available resources
* Tie: take largest one, then longest

* Adjust priorities based on waiting time
* Bump priority each time step you don’t get allocated

* Explore preemption strategies and their impact
* When to preempt vs wait, which session(s) to preempt first

* Explore strategies for responding to dynamic requests
 Allocation changes (extend, release, elongate)
* Running vs waiting priority balance



Step 3a: Application Integration

» Select candidate applications
* Mix of ML, DA, workflow — dynamic
* Traditional HPC — static
* Hybrid — OpenMP/MPI resource coordination via PMIx

* Integrate with PMIx to DynaSched

* Dynamic examples
* Replace static max possibly needed assumption
* Add resource allocation step(s)

 Static examples
* Add preemption hooks

* Explore impact
* Total time to solution
* System utilization
* Coding complexity (user adoption obstacles)



Estimated Timeline

» Step 1: Enhance PRRTE for RM role
* Two calendar months (Ralph, mentee)

e Step 2: PRRTE scheduler “hooks”
* One calendar month (Ralph, mentee)

» Step 3: Simple “greedy” scheduler
* Two calendar months (Ralph, mentee)

e Step 3a: Application Integration
e ?? (App person(s))

* Exploration and report
e 27 (All)



