
DynaSched
A dynamic scheduler for HPC/AI/DA

Overview of the problem

• Utilization rates are falling
• DOE has taken notice at facilities such as NERSC
• Expected to see similar issues at Argonne, ORNL, LLNL
• Caused by increasing use of HPC machines for AI/DA and workflows

• AI/DA are dynamic environments
• Operation in HPC static scheduling requires allocating max probable resources
• Many resources frequently lie idle during execution

• Custom workflows are dynamic at heart
• Pursue DAG to solution
• Uncertain which branches will be taken, what resources will be used
• Must allocate max probable resources to avoid early termination

• Sole contact with scheduler is at time of submission
• Obtain allocation envelope of maximum possibly required size

Requirements (I)

• Dynamic scheduler
• Must support traditional HPC static operations
• Treat non-traditional workloads as first-class citizens

• No “islands” of allocation
• Rapid response to dynamic requests (avoid idling applications)

• Maximize utilization vs energy consumption
• Anticipatory vs reactive to minimize dead time

• Application driven environment
• App-system integration
• Application is full partner in determining allocation, migration, pre-emption,

delayed start, resources to pre-position
• Extends from scheduling stage throughout app lifecycle

Requirements (II)

• Anticipatory launch
• Pre-position to anticipated launch regions

• Data, OS images, containers,…
• Inter-job energy management

• Power down, coast, power up,…?

• Learning to improve
• Allow sys admin to identify desired metrics
• Watch workloads vs metrics to improve scheduling algo and to better

predict/preposition required resources

Requirements (III)

• Broaden range of allocated resources
• Treat all resources used by applications as allocatable
• CPU, GPU, fabric, power, total energy, memory

• Broaden range of scheduling
• Allocation start/end
• Sequencing of apps (DAG), data position
• Static pipelines and dynamic branching

Requirements (IV)

• Resilient
• Assets can appear/disappear without warning
• Degradation can occur

• Example: communication link noise

• Application classes
• Traditional HPC – static, bulk synchronous
• Workflow HPC – execute DAG of apps
• Data analytics – stream processing of extremely large data sets
• Machine learning – training and inference, multiple algos (i.e., don’t fixate on

current DL approach!)
• Dynamic analysis – population modeling, statistical analysis (dynamic resizing,

non-synchronous)

Assumptions

• Preemption is acceptable
• When needed for higher priority/more urgent applications
• Register preemption abilities

• Handshake requirements (if any)
• Ability/willingness to accept preemption

• App participates in preemption
• Handshake timing, recovery requirements

• Node sharing may be acceptable
• If we can provide adequate resource allocation and security walls between

users

Architecture

PRRTE
PMIx
Client

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

System
Management Stack

Job
Script

Tool Support

DynaSched

DynaSched LRH Scheduler

• Lagrangian objective function
• Combine constraints into objective function using time-dependent

parameters (Lagrangian multipliers)
• Maximize number of sessions completed

• Within specified time and energy constraints
• Must complete entire DAG of dependencies

• Receding horizon
• Optimal control method used in job shops
• Predict evolution of system for limited time into future
• Control based on prediction until next measurement of system state

Objective Function

TEC = Total Energy Consumed
TSE = Total System Energy
AET = Application Execution Time
α,β,γ = Lagrangian multipliers [0,1], α+β+γ=1
τ = time constraint
T100 = number of sessions fully completed
T = number of sessions submitted

Term for each constraint (will need to extend)
Initial multiplier values set by experiment
 Adjust on the fly
Determine when to preempt

Methodology

• At each time step
• Collect set of all submissions that

• Meet all precedence constraints
• Adequate energy to execute at least minimum work
• Meet minimum resource constraints

• Evaluate ObjFn for each submission
• Order submissions based on ObjFn
• Find first submission that can be scheduled within time horizon - map it
• Continue until no additional submissions can be started within time horizon

• Increment time
• Recreate submission set

• New submissions, dynamic requests, session completions
• Proceed as above

Multiplier Adjustment

• Simple feedback controller
• Inputs

• Deviation from full utilization
• Current multipliers
• Some metric on sessions in queue and/or in execution?
• Historical behaviors?

• Outputs
• Updated multipliers

• Neural network controller
• Continuously train using queue metric, utilization?
• Output multipliers

My Role: Consultant

• Transfer knowledge
• LRH scheduler, possibly discuss adding NN integration
• PRRTE, PMIx code bases

• Setup platform for investigations
• Stable, robust PRRTE environment (pre-production ready)
• Stable, robust PMIx environment (production ready)
• DynaSched prototype

• Guide investigations
• Advise application team
• Actively participate in early investigations

Step 1: Enhance PRRTE for RM role

• Bootstrap backbone daemon network during cluster boot
• Security enhancements for privileged operation

• Deal with privileged-nonprivileged interactions

• Restore PRRTE daemon resilience
• Implement session instantiation procedure

• Fork/exec local daemon at user level
• Instant on wireup of session daemons

• General code cleanup
• Picky compiler, Coverity reports

Step 2: PRRTE scheduler “hooks”

• Reuse existing PMIx APIs where possible
• PMIx_Allocate_resources
• PMIx_Job_control

• Upward communication
• Relay allocation requests from apps
• Preemption registration from apps
• Resource inventory and changes in availability
• Changes in session status (terminate, etc)

• Downward communication
• Session instantiation/modification orders
• Pre-emption orders

Step 3: Simple “greedy” scheduler

• Priority based queueing system
• Take highest priority request that fits within available resources

• Tie: take largest one, then longest
• Adjust priorities based on waiting time

• Bump priority each time step you don’t get allocated
• Explore preemption strategies and their impact

• When to preempt vs wait, which session(s) to preempt first
• Explore strategies for responding to dynamic requests

• Allocation changes (extend, release, elongate)
• Running vs waiting priority balance

Step 3a: Application Integration

• Select candidate applications
• Mix of ML, DA, workflow – dynamic
• Traditional HPC – static
• Hybrid – OpenMP/MPI resource coordination via PMIx

• Integrate with PMIx to DynaSched
• Dynamic examples

• Replace static max possibly needed assumption
• Add resource allocation step(s)

• Static examples
• Add preemption hooks

• Explore impact
• Total time to solution
• System utilization
• Coding complexity (user adoption obstacles)

Estimated Timeline

• Step 1: Enhance PRRTE for RM role
• Two calendar months (Ralph, mentee)

• Step 2: PRRTE scheduler “hooks”
• One calendar month (Ralph, mentee)

• Step 3: Simple “greedy” scheduler
• Two calendar months (Ralph, mentee)

• Step 3a: Application Integration
• ?? (App person(s))

• Exploration and report
• ?? (All)

