
Application of Lagrangian Receding Horizon Techniques
to Resource Management in Ad Hoc Grid Environments

Ralph H. Castain1

ralph.castain@colostate.edu
William W. Saylor1

wsaylor@earthlink.net
H.J. Siegel1,2

hj@colostate.edu

Colorado State University
1Department of Electrical and Computer Engineering

2Department of Computer Science
Fort Collins CO 80523 USA

Abstract
An ad hoc computing grid is characterized not only by

constraints on the available energy and communications
bandwidth associated with each participating device, but
also by the dynamic nature of the grid itself. This is
caused by the mobile nature of the assets connected to the
grid (computing devices, sensors, and users), plus the fra-
gility of interconnecting communication links. The chal-
lenge, therefore, is to efficiently and robustly manage
both computational and communication resources in this
dynamic, unpredictable environment. This paper reports
on one potential solution that combines Lagrangian tech-
niques with the receding horizon concept used in modern
robust control systems.

I. Introduction

A heterogeneous network of mobile computing
devices, data collection sensors, communication channels,
and multiple users can be used as an ad hoc computing
grid to solve large-scale tasks. Such grids are character-
ized not only by constraints on the available energy and
communications bandwidth associated with each device,
but also by the dynamic nature of the grid itself. Assets
connected to the grid (computing devices, sensors, and
users) can – and frequently do – appear and disappear
from the grid at unanticipated times. In addition, commu-
nication links are prone to spurious failures and occa-
sional noise that significantly impacts the grid’s ability to
transfer information between nodes. Further compound-
ing the problem is the lack of full advanced knowledge of
the characteristics and arrival time of tasks that will be
submitted to the grid.

The challenge confronting ad hoc grid systems is to
efficiently manage both computational and communica-

tion resources in this dynamic, unpredictable environment
while ensuring that adequate quality of service (according
to some appropriate metric) is maintained. Meeting this
challenge will require a resource manager that can rapidly
reschedule tasks “on-the-fly” when computing resources
are unexpectedly lost or become unavailable for an unpre-
dictable period of time. The ability to recover partial
results would be a desirable feature, but may prove too
costly in light of its attendant demands on the communi-
cation subsystem.

One approach to solving this problem assumes full
advance knowledge of all tasks that will be executed by
the system during some specified period of operation.
Such “static” (or “offline”) resource managers schedule all
the tasks and communications prior to any actual execu-
tion taking place. Thus, static resource managers can take
advantage of this knowledge to, for example, schedule
data transfers from one task to another in anticipation of
the second task becoming ready for execution. In addi-
tion, static resource managers have more time to compute
task/machine assignments due to their offline operation.

In contrast, “dynamic” resource managers operate
“online” and hence do not have access to the full range of
information available to their static counterparts.
Dynamic resource managers must schedule tasks and
communication while execution of previously scheduled
tasks is taking place, thus placing added emphasis on the
execution speed of the heuristic itself. In addition,
dynamic heuristics cannot take advantage of visibility
into the future to pre-schedule actions such as communi-
cations.

This paper reports on one potential dynamic solution
to the ad hoc grid challenge that is based on combining
the “receding horizon” concept from the control commu-
nity with Lagrangian-based resource management meth-
ods found in some modern manufacturing line scheduling
systems. In this initial investigation, the behavior of sev-

eral possible variations of the proposed solution were
studied in a simplified situation as a first step towards
developing an overall solution to the problem. The results
of these tests were subsequently compared against the
performance from a common static heuristic.

II. Related Work

The Lagrangian approach to constrained problems was
initially developed as a method for dealing with systems
involving nonholonomic constraints – i.e., constraints that
cannot be expressed as a function of the form

f r1 , r2 , r3 , ... , t =0 [Go50]. Examples of nonholonomic
constraints include the walls of a container that constrain
the motions of a gas, or a particle constrained to move on
the surface of a sphere. In these situations, the equations
governing the behavior of the system can be solved by
introducing the constraints into those equations through
the use of Lagrangian multipliers – undetermined parame-
ters that are often functions of time.

Since that time, the Lagrangian technique has been
applied to an ever-increasing range of problems that
involve complex system equations and nonholonomic
constraints [LeM67] [BrH75]. Extending the technique to
the resource management problem where heuristics must
be bound by “hard” constraints on precedence, energy,
and time – all nonholonomic in nature – was a natural fit.

The most common use of the Lagrangian technique for
scheduling has been in the manufacturing area. In these
cases, the problem is to optimally schedule the manufac-
ture of parts in an industrial operation where the parts
require multiple machining operations and have desired
completion times. There is a penalty for finishing too
early or too late. The machining operations are con-
strained by the available resources in terms of the types of
machines used, the finite number of machines of each
type, and the scheduling precedence requirements.

Luh and Hoitomt [LuH93] successfully adopted the
Lagrangian approach by breaking the overall manufactur-
ing problem into a series of sub-problems. This approach
combines Lagrangian relaxation techniques with post-
solution scheduling heuristics. The Lagrangian multipliers
attempt to measure the marginal costs associated with
machine capacity and scheduling precedence constraints.
As dynamic changes in the manufacturing environment
occur, the pre-existing optimal values of the Lagrangian
multipliers can be used as a starting point for the compu-
tations for the changed environment. However, the result-
ing Lagrangian-based solutions typically represent infea-
sible schedules in that there are temporal machine capac-
ity and scheduling precedence constraint violations. The
final solution requires the use of list scheduling tech-
niques whereby a greedy scheduling heuristic is used to

sequentially schedule tasks by order of decreasing mar-
ginal costs. The problem is effectively treated as a sched-
uling solution to a static environment and the Lagrangian
multipliers cannot be modified, and generate a guaranteed
feasible solution, in a continuously changing environ-
ment.

Subsequently, Luh et al. [LuZ00] extended the Lagran-
gian technique through the introduction of a neural net-
work that adjusted the Lagrangian multipliers as the
scheduling progressed to achieve closer-to-optimal
results. The key result in this work was a proof of the
convergence of the Lagrangian relaxation neural network
(LRNN) approach for constrained optimization problems.
There are no requirements on the differentiability of the
describing functions or the continuity of the decision vari-
ables – provided that the evolution of the decision vari-
ables leads the Lagrangian to a global minimization.

This approach works well for statically mapping the
part manufacturing sequence in an industrial environ-
ment. However, it has two significant limitations:

(a) the LRNN formulation generally converges to a
solution that may not be entirely feasible because of
the difficulty in characterizing some constraints. As
a result, there is a final step that readjusts the map-
ping to ensure the final solution is feasible; and

(b) as implemented, the technique cannot respond to
dynamic changes in the production line, such as the
loss of a machine, without rescheduling the entire
production sequence.

Removing these limitations requires the introduction
of a second technique, also taken from the controls com-
munity. The receding horizon concept for optimal control
first appeared in the 1960s as a method for accurately
controlling nonlinear processes (e.g., [LeM67]). As
described at that time, the basic concept involved the
measurement of the current process state, followed by
rapid computation of the predicted evolution of that state
for a finite period of time in the future (known as the
horizon). The results of the computation were then used
to control the process during the horizon period until a
new measurement of the process state is made. This pro-
cedure is repeated throughout the process, thus providing
a piecewise solution to the control problem.

Little was done with the concept initially, primarily
due to the high computational requirements involved in
the prediction portion of the algorithm. However, the con-
cept resurfaced in the late 1970s in the form of Model
Predictive Control (MPC) – also known as Receding
Horizon Control (RHC) – as microprocessors began to
enter the market. Variants of the technique rapidly spread,
particularly in the petrochemical industry, where eco-

nomic considerations push for the absolute maximum in
production.

Since that time, MPC has emerged as a standard tech-
nique for control of multivariable, constrained systems
[WhS92]. However, although there are many similarities
between the problems of optimal control of dynamic sys-
tems and the scheduling of production tasks in a manufac-
turing environment where there are numerous precedence
and resource availability constraints, the application of
MPC techniques to the problem of resource management
has only recently become the subject of research.

In particular, Pereira and Sousa [PeS97] developed a
hierarchical computational framework for the integrated
planning and scheduling of manufacturing operations.
The manufacturing operations modeled are discrete
events that have been treated as a continuous flow model
at multiple levels of a hierarchical structure. The optimi-
zation occurs with respect to a distinct number of opera-
tions that define the current point of the receding horizon.
Combinations of levels of hierarchy, the length of the
time horizon, and degree of task aggregation are used to
analyze the trade-off between complexity and model
accuracy. In the scheduling determination, the operations
of the machines are first ordered by criticality. Then a
feasible schedule is constructed for the most critical
machines and the allocation and scheduling of the next
lower level of machines is generated. Mathematically, the
optimization step uses a pseudo-Hamiltonian formulation
of the continuous flow problem.

This approach appears to work well for well-described
manufacturing operations where the parameter perturba-
tions are small. The approach does not demonstrate the
ability to be implemented in a real-time computational
architecture with large dynamic changes in the rate of
task arrivals or machine and communication path disrup-
tions.

This paper explores an alternative approach to the
existing literature by explicitly pursuing a computational
strategy that lends itself to real-time allocation and sched-
uling decisions based upon a continuously updated opti-
mization problem. The fundamental problem addressed is
one of optimal allocation of resources in a constrained,
dynamic, sometimes unreliable, computing grid. The pro-
posed solution combines the receding horizon concept
with Lagrangian multipliers to find the optimal solution
with respect to a global cost function with explicit con-
straint formulations. This approach is particularly attrac-
tive due to its potential for being mapped directly onto
hardware such as digital signal processors (DSPs) or
field-programmable gate arrays (FPGAs), thus providing
the algorithmic speed required for deployment in many
real-time field applications.

III. Ad Hoc Grid Environment

The purpose of this initial study was to assess the per-
formance of the mapping heuristics in three different, but
static, ad hoc grid configurations. Dynamic reconfigura-
tion of the grid between the three cases was not permitted
during this initial work. This allowed the effort to focus
solely on the behavior of the heuristics in each configura-
tion, without complicating the problem with the transition
response.

In each case, the heuristics were tested using an appli-
cation consisting of a single task composed of T
communicating subtasks. Since both the energy available
and the time for the entire task to complete within the ad
hoc grid was limited, each subtask was provided with two
versions (a “primary” and a “secondary” version) that
could be executed. The secondary version of each subtask
used 10% of the energy and time of the primary, or “full”,
version, and transferred 10% of the data output to subse-
quent child subtasks. This secondary version represents a
reduced capability designed to provide some lesser over-
all value while consuming correspondingly fewer
resources than its primary counterpart. Thus, the secon-
dary version allowed the resource manager a greater
range of options to successfully map the complete task,
especially when faced with very tight energy and time
constraints.

The estimated time to compute (ETC) each subtask
was calculated using the Gamma distribution method
described in [AlS00]. ETC(i, j) represents the estimated
execution time of subtask i on machine j. For this study,
ten different ETC matrices were developed with a mean
estimated execution time for a single subtask of 131 sec-
onds. Each ETC matrix included two classes of machines
(fast and slow). Fast machines, on average, executed
roughly ten times faster than slow machines. The exact
ratio was determined randomly for each subtask to avoid
any deterministic influence.

The objective of each experiment was to maximize the
number of subtask primary versions (T 100) that could be
executed while still completing the application within
specified time and energy constraints. These were subse-
quently chosen to force load balancing across all available
machines. The subtask dependencies were given by a
directed acyclic graph (DAG). Ten separate DAGs were
used in the simulations, each generated using the method
described in [ShC04].

In addition, the size of the global data item g(i,j) that
each subtask communicated to another subtask was speci-
fied. The size of each g(i,j) was generated according to
the method described in [ShC04]. These values were not
varied across the three ad hoc grid configurations studied

in this effort. The different combinations of ETC and
DAG pairs, therefore, provided 100 unique scenarios that
were used for all three cases.

Each of the three grid configurations was distinguished
by a different number of machines M , as shown in Table
1 below. Case A represented the baseline grid configura-
tion where all machines are present. Case B was created
by eliminating one of the slow machines, while Case C
eliminated one of the fast machines.

Table 1. Simulation configurations

Configuration
“Fast”

Machines
“Slow”
Machines

Case A 2 2

Case B 2 1

Case C 1 2

Each machine j was characterized by four parameters:
i. the energy capacity of its battery, B (j) ;
ii. an energy consumption rate for computation per

time unit, E (j) ;
iii. an energy consumption rate for communication

per time unit, C (j) ; and
iv. a communication bandwidth, BW(j).

The values of these parameters for both fast and slow
machines are shown in Table 2. These values represent a
rough industry average based on microprocessors and bat-
tery capacity on selected, currently commercially-avail-
able machines. Fast machines were typified by the Dell
Precision M60 notebook computer using an Intel MP4M
processor operating at 1.7GHz. The numbers for the slow
machines were taken from typical personal digital assis-
tant (PDA) computers such as the Dell Axim X5 that uses
an Intel PXA255 processor operating at 400MHz.

Table 2. The values of B(j), C(j), E(j), and BW(j)
for fast and slow machines

“Fast” Machines “Slow” Machines

B(j) 580 energy units 58 energy units

C(j) 0.2 energy units/sec 0.002 energy units/sec

E(j) 0.1 energy units/sec 0.001 energy units/sec

BW(j) 8 megabits/sec 4 megabits/sec

The time required to transmit one bit of a global data
item from machine i to machine j was given by:

Using these energy capacities and consumption rate
characteristics for the individual machines, a value of
34,075 seconds was selected as the time constraint (τ) for
completing execution of the full task based on experi-
ments using a simple greedy static heuristic. Requiring
the task to complete within this time constraint, subject to
the available energy and consumption rates shown in
Table 2, forced the resource managers to balance the load
across all available machines.

Several simplifying assumptions were incorporated
into the simulations:

(a) machines consume no energy when idle, nor do they
consume energy when receiving information.
Machines only consume energy when computing
and when transmitting information to another
machine. No energy is consumed when transferring
information between subtasks on the same machine;

(b) each machine is capable of executing only one sub-
task at a time. Communication, whether transmitting
or receiving, does not interfere in any way with exe-
cution;

(c) each machine can simultaneously handle one outgo-
ing data transmission and one incoming data recep-
tion; and

(d) subtasks are available for scheduling as soon as their
input data is available (i.e., when their parent(s)
complete execution). Subtasks cannot begin execu-
tion, however, until all of their input data is trans-
mitted from the parent(s) computing machine and
received by the machine to which the subtask is
assigned.

IV. Simplified Lagrangian Receding Horizon
(SLRH) Resource Manager

The Simplified Lagrangian Receding Horizon (SLRH)
resource manager owes its name to its dual heritage from
the Lagrangian and receding horizon concepts. The term
“simplified” signifies that the Lagrangian multipliers are
treated as constants as opposed to adjusted during the
course of the simulation. This results in a less optimal
mapping, but provides a faster and easier implemented
algorithm. Assessing the impact of this simplification was
a key element of the study.

The SLRH is fundamentally constructed as a dynamic
heuristic – i.e., the algorithm only operates on subtasks
that can be mapped at any given moment, without knowl-
edge of the full range of subtasks in the simulation. In a
truly dynamic environment, each subtask would arrive at
some non-deterministic time. For simplicity in this study,
each subtask was assumed to be available for mapping as
soon as its precedence constraints had been satisfied.

CMT i , j = 1
min BW i , BW j

The basic operation of the SLRH is diagrammed in the
flow chart of Figure 1. The algorithm operates on a clock-
driven basis – i.e., the heuristic is executed at specified
time intervals as opposed to whenever a machine
becomes available. In this study, the algorithm was exe-

cuted at timesteps of Δ T clock cycles (whose value was
determined by experiment, as described in Section VII),
where each clock cycle represented 0.1 seconds in the
simulation.

Figure 1. Flow chart of Simplified Lagrangian Receding Horizon heuristic

Machine j available
at this clock cycle?

Collect pool of all subtasks that can
feasibly be executed at this time

Pool
Empty?

Evaluate objective function for both
versions of all subtasks in pool

Rank subtasks from high to low on
objective function evaluation

Find first subtask in list that can
begin execution within time horizon

Assign selected subtask to machine
and schedule all communications

Update all model
parameters

All subtasks
mapped?

Step to
next

machine

Increment master
clock by timestep

Looped thru
all machines?

Reached
time constraint

τ?

END

END

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

At each specified time interval, the SLRH algorithm
cycled through each machine in the simulation. For each
machine, the algorithm first checked to see if it was avail-
able at this clock cycle. If the machine was available, then
the algorithm proceeded to attempt to map a subtask onto
it. If the machine was not available, then the algorithm
moved on to the next machine and checked availability on
it. The machines were checked in simple numerical order.
If no machine was available at this clock cycle, the simu-
lation clock was incremented by the specified time inter-
val and the algorithm started again.

In the simulation, the complete pass through all
machines was accomplished without introducing any
unnecessary machine idle time. Thus, a timestep of ΔT=1
clock cycle was permitted, although use of such a value
resulted in lengthy heuristic execution times. The execu-
tion time of the heuristic in a real-time field application,
however, could lead to significantly larger minimum ΔT
values. Thus, the heuristic execution time is of consider-
able importance. Fortunately, the SLRH algorithm is
amenable to a parallel hardware implementation. This
option was not considered in this initial study, but
remains the subject of continued investigation.

If the machine was available at this clock cycle, the
algorithm proceeded to collect a “pool” of candidate sub-
tasks, denoted by U. The entire set of unmapped subtasks
was reviewed to determine which ones can “feasibly” be
mapped on the machine at this iteration. Feasibility for
each subtask was defined by ensuring that it met two con-
ditions: (a) all of its parent subtasks were previously
mapped, and (b) adequate energy remained on the target
machine for that subtask to execute at the secondary ver-
sion level and communicate all the resulting data items to
wherever they might need to go.

Unfortunately, the exact value of this last quantity
depended upon the mapping of the subtask’s children. The
energy required to communicate data from one machine
to another depends upon the two machines’ respective
bandwidths. In addition, subtasks mapped to the same
machine required no energy to communicate between
them.

Because the subtask’s children could not have been
mapped prior to this time, the energy that would be
required to communicate to them cannot be accurately
known. The algorithm resolved this uncertainty through a
worst-case approach: the energy required to communicate
to each subtask child was calculated assuming the child
process had been mapped to the lowest bandwidth con-
nection – and hence, would consume the maximum
amount of communication energy from the subtask’s
machine.

Using this approximation and the execution time for
the subtask’s secondary version on the target machine, the
total required energy was compared to the available
energy level. If the energy available was not adequate, the
proposed subtask mapping was declared “infeasible” and
not included in the resulting candidate pool. Otherwise,
the subtask was considered “feasible” and included in U.

This was clearly a conservative approach that poten-
tially excluded a number of acceptable mappings. How-
ever, in this study, the communications energy proved to
be a negligible factor in the calculations. Thus, the use of
the worst-case communications energy was not found to
significantly affect the mapping process.

The decision to map the primary versus secondary ver-
sion was made at a later point – this step simply ensured
that at least the secondary version could be executed on
the target machine, thus saving the algorithm from
expending effort on subtasks that would eventually have
to be rejected. If the pool of candidate subtasks was
empty (i.e., none of the remaining subtasks could be fea-
sibly mapped on the target machine), the algorithm pro-
ceeded on to the next machine.

If the candidate pool U was not empty, the algorithm
evaluated each subtask in the pool in terms of the impact
it would have on a global objective function. This was
done for both versions of each subtask. The algorithm
then compared the results of the objective function
evaluation for the two versions, and selected the version
that maximized the value of the objective function. The
selected version was retained in the pool – the other ver-
sion was no longer considered during this iteration of the
program.

The pool of candidate subtasks was subsequently
ordered according to the resulting objective function from
maximum to minimum value. Proceeding through the
ordered pool of candidate subtasks, the program deter-
mined the earliest possible starting time for the subtask
given precedence and communication requirements. No
action was allowed to be scheduled earlier than the cur-
rent clock cycle (i.e., the program would not allow the
scheduler to look backward in time). The first subtask that
was capable of being started within the specified time
horizon H was selected for mapping.

Given the selected subtask and the corresponding
specified version, the algorithm assigned the subtask and
version to the target machine and scheduled all incoming
communications. Finally, the algorithm updated the
energy levels (including energy used for communications
and subtask execution) of all machines, and stored a his-
torical record of all critical parameters for later analysis.

Once a mapping to the target machine had been com-
pleted, the algorithm subsequently checked to see if all

subtasks had been successfully mapped, and terminated if
this had been accomplished. If some subtasks were still
unmapped, the algorithm continued to loop on the current
machine cycle until all machines had been checked. Once
this had been accomplished, the algorithm incremented
the system clock by the specified time step, checked to
see if the time constraint τ had been reached, and then
restarted the previously detailed loop.

Of primary importance to the performance of the
SLRH algorithm is the selection of an appropriate objec-
tive function. In the Lagrangian approach, the objective
function is formed by combining the overall objective (in
this study, maximizing the number of primary version
subtasks that can be executed) with the specified system
constraints on total system energy and application execu-
tion time, AET, defined as the time at which the last sub-
task is completed. Thus, the global objective function
used for this study can be expressed as a weighted sum of
terms involving the total number of primary version sub-
tasks mapped, the energy consumed by the execution of
all mapped subtask/version pairs, and the AET of the
resulting solution. Using , , and as the weights, defin-
ing the total system energy (TSE) as

and denoting the total energy consumed by the mapping
(TEC) as

where EC(j) represents the energy consumed on machine
j by executing all subtask/version pairs assigned to that
machine (including all scheduled communications), the
global objective function can be written as:

Although only two weights are actually required, three
weights were used in the study to allow easy investigation
of system performance in the absence of any of the three
terms.

This form of the objective function reflects the heuris-
tic's focus on maximizing the objective function value.
Larger values of T100 are rewarded, and larger consump-
tion of energy penalized. Use of a negative sign on this
term caused the heuristic to produce very short AET solu-
tions, but with correspondingly lower T100 values. Given
the stated objective for this study of maximizing T100, this
was considered an undesirable trade-off. Hence, the posi-
tive sign on the final term was selected to encourage use

of all of the available time within the AET's specified time
constraint.

Each term of the objective function has been normal-
ized to the [0,1] range. By constraining each of the
weights to that range, and requiring that α+β+γ=1, the
objective function was confined to the same [0,1] range.
Note that the “hard” boundary conditions on total system
energy and application execution time are now expressed
as a “soft” bias in the objective function, thus making it
possible for solutions formed by this approach to actually
violate a system constraint. In prior work, each solution
was checked for constraint violation after the mapping
was completed. While this approach is acceptable for the
offline situations described in that work, the dynamic
nature of the ad hoc grid problem precludes it. The solu-
tions in the dynamic case must therefore be checked for
constraint violation on an ongoing basis.

Thus, the feasibility check performed in establishing
the pool of candidate subtasks U becomes a critical func-
tion. However, this check only verified compliance with
the energy constraint. Verifying compliance with the
specified constraint on AET was accomplished by adjust-
ment of the objective function parameters. All mappings
whose AET exceeded the specified τ were rejected, and
their (α, β) values adjusted until the AET was brought
into compliance.

V. Heuristics

Three variations of the SLRH heuristic were evaluated.
In addition, a common static heuristic (Max-max) was
used to provide a baseline for comparison. The heuristics
included:

SLRH-1: The Simplified Lagrangian Receding Hori-
zon Heuristic – Variation 1 (SLRH-1) served as the base-
line variation. It operated identically to the previous
description.

SLRH-2: The Simplified Lagrangian Receding Hori-
zon Heuristic – Variation 2 (SLRH-2) followed the SLRH
algorithm with a single major distinction. Whereas in
SLRH-1 each machine was only assigned a single sub-
task/version pair at a given timestep, SLRH-2 continued
to assign subtask/version pairs to a machine at a given
timestep until either all pairs in the candidate pool U had
been assigned or no additional pairs could be started
within the time horizon. Therefore, subtask/version pairs
would continue to be assigned to machine 1 (for example)
before a new candidate pool was created and any of its
subtask/version pairs were assigned to machine 2. Once
all machines had been processed in this fashion, the
timestep was incremented and the heuristic continued as
in SLRH-1.

TEC= ∑
j=0

∣M∣−1

EC j

ObjFn , ,=
T 100

∣T∣
− TEC

TSE
 AET

TSE= ∑
j=0

∣M∣−1

B p j

SLRH-3: The Simplified Lagrangian Receding Hori-
zon Heuristic – Variation 3 (SLRH-3) extended the
SLRH-2 method by recreating and re-evaluating U after
each subtask/version pair assignment. Thus, as a subtask
was mapped, the heuristic immediately added that sub-
task's children to U (assuming all other requirements were
met), re-evaluated all subtask/version pairs in U, and con-
tinued mapping on the same machine.

Max-Max: The Max-Max static heuristic used to pro-
vide a baseline for evaluating performance of the
dynamic heuristics against this problem was based on the
general “Min-Min” approach described in [IbK77]. The
heuristic utilized the same objective function as the SLRH
heuristics, but did not involve a receding horizon element.
The heuristic began by creating a candidate pool U of
“feasible” subtask/version pairs. However, for the Max-
Max heuristic, the definition of “feasible” was slightly
modified from that used in the SLRH heuristics. While
the requirement that all parent subtasks be previously
mapped was retained, the energy requirement was modi-
fied to separately consider each subtask version. Thus, the
“feasibility” of both the primary and secondary versions
were independently assessed. It was therefore possible for
U to simultaneously include both versions of the same
subtask.

The Max-Max heuristic subsequently selected from
within the complete set U for each machine that
subtask/version pair that provided the maximum increase
in the objective function. From this subset, the
subtask/version/machine triplet that provided the maxi-
mum increase in the objective function was selected and
assigned to the corresponding machine.

The heuristic allowed a mappable triplet to be sched-
uled for a time prior to the target machine’s availability
time if a sufficiently large “hole” in the existing schedule
could be found that complied with precedence con-
straints. This process continued until all subtasks were
mapped.

VI. Upper Bound Calculation

Calculating an upper bound on the number of primary
version subtasks that could be executed on a given set of
machines requires consideration of the imposed limits on
both time and energy. An estimate of the upper bound
was computed for this problem using the concept of
“equivalent computing cycles”. In this method, each
machine contributes a number of clock cycles to the sys-
tem that is determined by the overall time limit for the
scenario, adjusted to reflect the speed of that machine
relative to a reference machine. Thus, the method creates
a “pool” of equivalent clock cycles for the system that

represents the total computing resources available to the
system within the time limit constraint.

As the choice of reference machine was arbitrary, the
approach used in this effort selected the 0th machine. The
first step in the upper bound calculation scans through all
subtasks and calculates the ratio of each subtask’s execu-
tion time on each machine to that subtask’s execution time
on the reference machine. The method then finds the
minimum ratio (MR) across all subtasks for each
machine, given by:

The average minimum ratio and associated standard
deviation for each machine, computed across all ten ETC
matrices for each case, is shown in Table 3 below.

Table 3. Average Minimum Relative Speed

Case
“Fast”

Machine 1
“Slow”

Machine 1
“Slow”

Machine 2

A 0.28 (0.03) 1.65 (0.18) 1.74 (0.3)

B 0.26 (0.03) 1.55 (0.32)

C 1.63 (0.42) 1.59 (0.33)

The minimum ratio is a measure of the absolute mini-
mum number of clock cycles on machine j that are
required to complete the same amount of work as on the
reference machine. Each machine thus contributes a num-
ber of “equivalent cycles” to the system’s pool that is
equal to the overall time limit divided by the MR for that
machine. For example, a machine whose minimum ratio
was 2.0 (indicating that the time required for any subtask
to complete on it was at least twice as long as on the ref-
erence machine) would contribute a number of equivalent
cycles to the pool equal to the time limit divided by 2.
This represents the best-case situation, thus ensuring that
the method provides an upper bound on the number of
subtasks that could be executed with their primary ver-
sion. Thus, the total available equivalent computing
cycles (TECC) within the system is given by:

Given this pool of computing cycles and the previ-
ously defined total system energy (TSE), the upper bound
calculation proceeded by searching the primary version of
all previously unused subtasks across all machines to find
the subtask-machine pair that consumed the minimum
amount of energy. The number of equivalent cycles
required to execute the primary version of this subtask

MR j =
∣T∣−1
min
i=0

ETC i , j
ETC i ,0

TECC= ∑
j=0

∣M∣−1
MR j

was computed by dividing its execution time on that
machine by the machine’s MR. If the system had both
enough total equivalent computing cycles and enough
total system energy to complete the subtask, then the
number of primary version subtasks that can be executed
was incremented by one and the energy and equivalent
cycles associated with that subtask were subtracted from
the system's resources. This process continued until either
insufficient energy or equivalent cycles remained to com-
plete the primary version of the selected subtask.

The results of the upper bound calculation for the three
simulation cases are shown in Table 4 below for each of
the ten ETC matrices. In general, the upper bound calcu-
lation revealed that the system as a whole had adequate
energy and compute cycles to complete primary versions
of all subtasks for Case A and Case B, although the distri-
bution of those resources across the individual machines
precluded such a solution. This was not the situation in
Case C, where the lack of sufficient compute cycles was
the primary limit on the upper bound.

Table 4. Results of upper bound calculation

ETC
Case A

2 fast, 2 slow
Case B

2 fast, 1 slow
Case C

1 fast, 2 slow

0 1024 1024 817

1 1024 1024 862

2 1024 1024 816

3 1024 1024 654

4 1024 1024 900

5 1024 1024 772

6 1024 1013 733

7 1024 1024 804

8 1024 1024 756

9 1024 1024 724

VII. Experimental Results

Establishing a value for the ΔT parameter within the
SLRH variants was accomplished by considering the
parameter's impact on both T100 and execution time. Large
values of ΔT resulted in fewer iterations of the heuristic
and potentially large gaps of unused computational
cycles, thus causing a reduction in the number of primary
version subtasks that could be mapped within the time
constraint. Small values of ΔT, however, resulted in a
large number of heuristic iterations that provided no suc-
cessful mapping of a subtask.

These trends are reflected in the results shown in Fig-
ure 2 for SLRH-1 operating on ETC 0 for two DAGs. The
top two lines in the figure illustrate the impact of ΔT on

T100 for the SLRH-1 heuristic operating on ETC 0 in Case
A for each of the two DAGs. The figure shows T100 to be
relatively insensitive to ΔT for mid-range values. The
lower two lines, however, illustrate the impact on heuris-
tic execution time under the same conditions. As the fig-
ure shows, the heuristic displays a strong dependence
between heuristic execution time and ΔT for small values.

Figure 2. Impact of ΔT parameter on SLRH-1

No significant variation in behavior with respect to ΔT
was found between the SLRH variants or the various
ETC/DAG combinations.

Similar analyses were performed for the SLRH time
horizon, H. Large values of H allowed the heuristic to
map subtasks for distant starting times, thereby reducing
the heuristic's flexibility for scheduling subsequent sub-
tasks. However, for this study, the impact of H on both
T100 and execution time was found to be negligible. Based
on the results of these analyses, values of 10 clock cycles
for ΔT and 100 clock cycles for H were used in the
remainder of the study.

A primary objective of the study was to determine the
sensitivity of the Lagrangian Receding Horizon concept
to the objective function weights. A relatively insensitive
heuristic might be able to operate in an ad hoc grid's
dynamic environment without incorporating a method for
online adjustment of the weights. More sensitive heuris-
tics, however, would require such methods to ensure ade-
quate levels of performance.

The sensitivity of the heuristics to the objective func-
tion weights was investigated by first independently vary-
ing the α and β values across their [0,1] range in steps of
0.1 until a general range was found that produced the best
T100 performance, subject to the energy and time con-
straints. In addition, the heuristic was required to success-
fully map all 1024 subtasks within both the specified
energy and time constraints for that (α,β) combination to
be included in the study. The values were then varied by

1 5 10 20 30 50 100

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

700

Timestep (cycles)

H
eu

ris
tic

 E
xe

cu
tio

n
T

im
e

(s
ec

)

T
10

0

0.02 across this smaller range until an optimal perform-
ance point was determined.

This optimality analysis was performed using each
heuristic for each ETC/DAG combination in all three
cases. The result of these experiments was a set of (α,β)
pairs for each case, each element of the set containing the
(α,β) values that provided the best performance with
respect to T100 for a particular ETC/DAG combination.
Each set was subsequently analyzed to find the average,
minimum, and maximum values of α and β.

The results of the analysis are shown in Figure 3,
below. The dashed lines connect the average value of the
respective parameter resulting from the analysis. The ver-
tical bars in each graph show the range from the mini-
mum to maximum value of the respective parameter for
each case. The set of optimal (α,β) pairs for each case

were essentially identical for the SLRH-1 and SLRH-3
variants – thus, their respective average, minimum, and
maximum values overlay each other on the graph. The
SLRH-2 variant, however, was found to rarely produce a
successful mapping of all 1024 subtasks within the time
and energy constraints regardless of the choice of α and
β. This variant was subsequently dropped from further
consideration and is not included in the graph.

The SLRH heuristic demonstrates a small degree of
variation in α across the various ETC/DAG combinations.
As Figure 3(a) shows, the optimal α value for SLRH per-
formance varied somewhat across the three cases. While
Cases A and B were relatively similar in both the value
and range of α, Case C differed significantly in both
areas. Not only did the optimal value of α change by over

Figure 3. Comparison of (α,β) variability in SLRH and Max-Max heuristics.

(a) α variability for SLRH heuristics (c) α variability for Max-Max heuristic

(b) β variability for SLRH heuristics (d) β variability for Max-Max heuristic

Case A Case B Case C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case A Case B Case C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case A Case B Case C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case A Case B Case C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50%, but the range of values that provided optimal per-
formance shrank a corresponding amount.

The β parameter for the SLRH heuristic, shown in Fig-
ured 3(b), exhibited even less variation than was found
for the α parameter, with the heuristic optimizing its per-
formance at the same value for every ETC/DAG combi-
nation in all three cases. There was a slight change in
value, however, between Cases A and B, and Case C.
Off-optimal operation of the heuristic in this last case by
using the same value of β as in Cases A and B resulted in
a loss of performance of less than 5%.

In contrast, the Max-Max heuristic exhibited a very
wide range of optimal α and β values, as shown in Fig-
ures 3(c) and 3(d). No direct correlation was found
between the optimal (α,β) combination and either the
ETC or DAG involved in the simulation. An exhaustive
search was therefore required to identify the optimal (α,β)
pair for Max-Max in each scenario.

Based on these results, it appears that the SLRH heu-
ristic will require a method for dynamically adjusting at
least the α parameter in response to changes in the ad hoc
grid environment.

The results shown in the remainder of this paper utilize
optimal values for α and β for each ETC/DAG combina-
tion. The performance of the three remaining heuristics
(SLRH-1, SLRH-3, and Max-Max) was evaluated in each
of the three cases. Each result reported is the average of
the outcomes from all 100 ETC/DAG combinations.

Figure 4 compares the performance of the heuristics
against the primary objective – maximizing the number of
primary version subtasks that could be executed. As the
figure shows, the SLRH-1 variant provided roughly
equivalent performance to that of the baseline provided

by the static Max-Max heuristic in Case A, both of which
significantly outperformed the SLRH-3 variant.

As expected, both the SLRH-1 and Max-Max heuris-
tics displayed a marked drop-off in performance as
machines are “lost” to the system. The SLRH-1 heuristic
fell off faster than the static Max-Max baseline, however,
indicative of the dynamic SLRH heuristic's more limited
knowledge of upcoming subtasks. The SLRH-3 heuristic
maintained its performance when losing one “slow”
machine. This was attributed to its poor performance
when all machines were present, as opposed to being
inherently more resilient than the other heuristics.

Performance of all three heuristics relative to the cal-
culated upper bound is shown in Figure 5 below. The
SLRH-1 performed well for Case A, achieving mappings
that averaged T100 values better than 60% of the upper
bound and were slightly better than the static Max-Max
baseline. Both of these heuristics suffered a significant
drop in performance when a machine was removed from
the system, with the Max-Max baseline heuristic showing
itself to be slightly less sensitive to the loss of a machine.
As the figure shows, however, the performance impact
relative to the upper bound was relatively independent of
the removed machine's type.

Performance of the SLRH-3 in Case A was signifi-
cantly poorer than the other heuristics. However, the heu-
ristic proved to be fairly insensitive (relative to the upper
bound) to the loss of machines, regardless of type.

Figure 5. Heuristic performance vs. calculated
upper bound

The average execution time for each of the heuristics
to successfully map all 1024 subtasks is shown in Figure
6. Timing experiments were conducted using the Python
2.3.3 scripting language on a non-dedicated 2.1GHz dual
Xeon processor computer with 2GB RAM and 512KB
L2-cache, running RedHat Linux version 9.0. Although

SLRH-1 SLRH-3 MaxMax

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Case A

Case B

Case C

P
er

fo
rm

an
ce

 v
s.

 U
pp

er
 B

ou
nd

 (
%

)

Figure 4. Comparison of heuristic performance
based on number of primary versions mapped

SLRH-1 SLRH-3 MaxMax

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Case A

Case B

Case C

T
10

0

the code was carefully written, no significant attempt to
optimize the code for execution time was made. The val-
ues shown represent the average heuristic execution time
across all ETC/DAG combinations for each case, with the
optimal values of α and β used for each ETC/DAG com-
bination.

Execution times of the Max-Max baseline heuristic
were relatively constant across the three cases, as
expected from the static nature of that heuristic. The
SLRH-3 variant displayed significant sensitivity to loss of
machines as this dictated consideration of a larger number
of alternative mappings at each iteration. In contrast,
SLRH-1 showed only a small increase in execution time
when losing a “slow” machine, and actually reduced its
execution time significantly when losing a “fast” machine.
This was attributed to the heuristic's ability to efficiently
utilize mappings of subtasks' secondary versions to take
advantage of the energy available on the “slow” machines
without violating the specified constraint on AET.

Figure 6. Comparison of average execution time
of heuristics

Significant speed improvements over the performance
shown in Figure 6 may be possible using compiled lan-
guages and through further optimization of the code. In
addition, tests on SLRH-1 indicate that execution speed
improvements of 15-20% are achievable through elimina-
tion of bookkeeping associated with instrumenting the
experiment and not associated directly with the algorithm.

For dynamic scenarios, comparing the relative value of
the heuristics requires definition of a metric that reflects
both the value of the mapping produced by the heuristic,
and the execution time of the heuristic itself in producing
that mapping. A simple metric based on the ratio of T100 to
the heuristic's execution time is shown in Figure 7.

Focused solely on the performance of the heuristic in
terms of the primary objective, the metric favorably

reflects the execution speed of the SLRH-1 variant rela-
tive to its SLRH-3 cousin. Both SLRH-1 and Max-Max
continue to exhibit relatively equal performance for Cases
A and B. However, the heuristics show a marked depar-
ture from that parity when confronted by the loss of a
“slow” machine. The dynamic SLRH-1 significantly out-
performed the static Max-Max heuristic in this scenario,
primarily due to its faster execution time.

Figure 7. Simple metric of performance per unit
of heuristic execution time

VIII. Summary

This paper presented one potential method for effi-
ciently and robustly managing both computational and
communication resources in a dynamic, unpredictable
environment. Formed by combining Lagrangian-based
resource management methods with the receding horizon
concept from the control community, the Simplified
Lagrangian Receding Horizon heuristic's performance
was evaluated against several cases reflecting the loss of
machines from the system.

 With all machines present, the SLRH heuristic per-
formed comparably to the baseline provided by a static
Max-Max heuristic in terms of T100. The heuristic dis-
played a significant sensitivity to the loss of machines,
but performed very well when measured against its exe-
cution time.

The need for on-the-fly adjustment of the Lagrangian
parameters in Lagrangian receding horizon heuristics was
also demonstrated. When confronted with changes in the
system's available resources, the heuristic was particularly
sensitivity to the T100 multiplier, thereby indicating that
this value requires adjustment whenever the system envi-
ronment changes. In contrast, the constraint multipliers (β

SLRH-1 SLRH-3 MaxMax

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

Case A

Case B

Case C

A
vg

 E
xe

c
T

im
e

(s
ec

) SLRH-1 SLRH-3 MaxMax

0

1

2

3

4

5

6

7

8

9

10

11

12

Case A

Case B

Case C

T
10

0/
E

xe
c.

 T
im

e

and γ) may either require less frequent adjustment or per-
haps be held constant.

The static nature of the Max-Max heuristic used to
provide a baseline for evaluating the performance of the
dynamic SLRH heuristics precludes its use in ad hoc grid
environments. However, the comparable performance
provided by the SLRH-1 heuristic in this initial study
indicates a significant potential to efficiently manage both
computational and communication resources in this
dynamic, unpredictable environment – despite the lack of
full knowledge of tasks that may be assigned to the grid.

Acknowledgments: The authors thank Shoukat Ali and
Sameer Shivle for their assistance in generating the test
data. This research was supported in part by the Colorado
State University George T. Abell Endowment.

References

[AlS00] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Modeling Task Execution Time Behavior in
Heterogeneous Computing Systems,” Tamkang Journal of
Science and Engineering, Special Tamkang University 50th

Anniversary Issue, vol. 3, no. 3, pp. 195-207, Nov. 2000,
(invited).

[BrH75] A.E. Bryson and Y-C Ho, Applied Optimal Control,
Hemisphere Publishing Corporation, New York, 1975.

[CaS03] R.H. Castain and W.W. Saylor, "Static Mapping for Ad
Hoc Grid Subtasks with Dependencies and Time and Energy
Constraints using Lagrangian Relaxation Neural Networks", EE
680 Project Report, Colorado State University, Ft. Collins, CO,
Apr 2003 (unpublished).

[Go50] H. Goldstein, Classical Mechanics, Addison-Wesley,
Massachusetts, 1950.

[IbK77] O.H. Ibarra and C.E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical processors”,
Journal of the ACM, vol. 24, no. 2, Apr. 1977, pp. 280-289.

[LeM67] E.B. Lee and L. Markus, Foundations of Optimal
Control Theory, Wiley, New York, 1967.

[LuH93] P.B. Luh and D.J. Hoitomt, “Scheduling of
manufacturing systems using the Lagrangian relaxation
technique”, IEEE Transactions on Automation and Control, vol.
38, no. 7, 1993, pp. 1066-1079.

[LuZ00] P.B. Luh, Y.W. Zhao, and L.S. Thakur, "Lagrangian
relaxation neural networks for job shop scheduling", IEEE
Trans. on Robotics and Automation, vol. 16, no. 1, Feb. 2000,
pp. 78-88.

[MaM03] D. Marinescu, G. Marinescu, Y. Ji, L. Boloni, and
H.J. Siegel, “Ad hoc grids: Communication and computing in a
power constrained environment”, Workshop on Energy-Efficient
Wireless Communications and Networks 2003 (EWCN 2003),
cosponsors: IEEE Computer Society and IEEE Communications
Society, in the proceedings of the 22nd International

Performance, Computing, and Communications Conference
(IPCCC), Apr. 2003.

[PeS97] F.L. Pereira and J.B. de Sousa, “On the receding
horizon hierarchical optimal control of manufacturing systems”,
Journal of Intelligent Manufacturing, vol. 8, 1997, pp. 425-
433.

[ShC04] S. Shivle, R.H. Castain, H. J. Siegel, A. Maciejewski,
T. Banka, K. Chindam, S. Dussinger, P. Pichumani, P.
Satyasekaran, W. Saylor, D. Sendek, J. Sousa1, J. Sridharan, P.
Sugavanam, and J. Velazco, “Static mapping of subtasks in a
heterogeneous ad hoc grid environment”, to be presented at the
13th International Heterogeneous Computing Workshop,
cosponsors: IEEE Computer Society and Office of Naval
Research, to appear in the proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS), Apr.
2004.

[WaS97] L. Wang, H.J. Siegel, V.P. Roychowdhury, and A.A.
Maciejewski, “Task matching and scheduling in heterogeneous
computing environments using a genetic-algorithm-based
approach,” Journal of Parallel and Distributed Computing, vol.
47, no. 1, pp. 8-22, Nov. 25, 1997.

[WhS92] D.A. White and D.A. Sofge, ed., Handbook of
Intelligent Control, Van Nostrand Reinhold, New York, 1992.

[YuH01] C-Y Yu and H-P Huang, " Priority-based tool capacity
allocation in the foundry fab", Proceedings of the 2001 IEEE
International Conference on Robotics & Automation, Seoul,
Korea, pp. 1839-1844, May 21-26, 2001.

Biographies

Ralph H. Castain is currently serving as a Research
Scientist within the Electrical and Computer Engineering
Department at Colorado State University where he con-
ducts research focused on robust resource management
within distributed computing systems. In addition, he is
leading the Colorado Grid Computing (COGrid) Initiative
on behalf of Colorado State University, an effort that he
founded in late 2002 to create a statewide grid computing
system capable of meeting the needs of industry, govern-
ment, and academia of all levels. Prior to joining the Uni-
versity, he spent eight years in industry leading technol-
ogy initiatives, and eleven years at Los Alamos National
Laboratory. While at Los Alamos, he served as Chief Sci-
entist for Nonproliferation and Arms Control. His techni-
cal paper in the early 1990s on next generation methods
for proliferation detection has served as the foundation
for the U.S. government's nonproliferation research pro-
gram for over ten years. He received his BS degree from
Harvey Mudd College, and the MS, MSEE, and PhD
degrees from Purdue University.

William W. Saylor is currently working as a consult-
ant for the Department of Defense on several advanced

technology programs and is also in a graduate program at
Colorado State University doing research on control
issues for complex systems. He has spent the past eight
years working in the defense and energy industries after
twelve years at the Los Alamos National Laboratory,
where he was a project leader for several aerospace and
defense efforts. Prior to that he worked as a nuclear engi-
neer in the energy industry and spent nine years in the U.
S. Army. He received his BS degree from The United
States Military Academy and an MS degree from MIT.

H. J. Siegel holds the endowed chair position of Abell
Distinguished Professor of Electrical and Computer Engi-
neering at Colorado State University (CSU), where he is
also a Professor of Computer Science. He is the Director
of the CSU Information Science and Technology Center
(ISTeC). ISTeC a university-wide organization for pro-
moting, facilitating, and enhancing CSU’s research, edu-
cation, and outreach activities pertaining to the design and
innovative application of computer, communication, and
information systems. Prof. Siegel is a Fellow of the IEEE
and a Fellow of the ACM. From 1976 to 2001, he was a
professor in the School of Electrical and Computer Engi-
neering at Purdue University. He received a B.S. degree

in electrical engineering and a B.S. degree in management
from the Massachusetts Institute of Technology (MIT),
and the M.A., M.S.E., and Ph.D. degrees from the
Department of Electrical Engineering and Computer Sci-
ence at Princeton University. He has co-authored over
300 technical papers. His research interests include het-
erogeneous parallel and distributed computing, communi-
cation networks, parallel algorithms, parallel machine
interconnection networks, and reconfigurable parallel
computer systems. He was a Coeditor-in-Chief of the
Journal of Parallel and Distributed Computing, and has
been on the Editorial Boards of both the IEEE Transac-
tions on Parallel and Distributed Systems and the IEEE
Transactions on Computers. He was Program Chair/Co-
Chair of three major international conferences, General
Chair/Co-Chair of four international conferences, and
Chair/Co-Chair of five workshops. He is currently on the
Steering Committees of five continuing
conferences/workshops. He is a member of the Eta Kappa
Nu electrical engineering honor society, the Sigma Xi sci-
ence honor society, and the Upsilon Pi Epsilon computing
sciences honor society. An up-to-date vita is available at
www.engr.colostate.edu/~hj.

