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Abstract
An ad hoc computing grid is characterized not only by

constraints on the available energy and communications
bandwidth associated with each participating device, but
also  by  the  dynamic  nature  of  the  grid  itself.  This  is
caused by the mobile nature of the assets connected to the
grid (computing devices, sensors, and users), plus the fra-
gility of interconnecting communication links. The chal-
lenge,  therefore,  is  to  efficiently  and  robustly  manage
both computational and communication resources in this
dynamic, unpredictable environment. This paper reports
on one potential solution that combines Lagrangian tech-
niques with the receding horizon concept used in modern
robust control systems.

I. Introduction

A  heterogeneous  network  of  mobile  computing
devices, data collection sensors, communication channels,
and multiple users can be used as an  ad hoc computing
grid to solve large-scale tasks. Such grids are character-
ized not only by constraints on the available energy and
communications bandwidth associated with each device,
but also by the dynamic nature of the grid itself. Assets
connected  to  the  grid  (computing  devices,  sensors,  and
users)  can – and  frequently  do  – appear  and  disappear
from the grid at unanticipated times. In addition, commu-
nication  links  are  prone  to  spurious  failures  and  occa-
sional noise that significantly impacts the grid’s ability to
transfer information between nodes.  Further  compound-
ing the problem is the lack of full advanced knowledge of
the characteristics and arrival  time of  tasks that will be
submitted to the grid.

The challenge confronting  ad hoc  grid systems is  to
efficiently  manage both computational and communica-

tion resources in this dynamic, unpredictable environment
while ensuring that adequate quality of service (according
to some appropriate metric) is maintained. Meeting this
challenge will require a resource manager that can rapidly
reschedule tasks “on-the-fly” when computing resources
are unexpectedly lost or become unavailable for an unpre-
dictable  period  of  time.  The  ability  to  recover  partial
results would be a desirable feature, but may prove too
costly in light of its attendant demands on the communi-
cation subsystem.

One  approach  to  solving  this  problem  assumes  full
advance knowledge of all tasks that will be executed by
the  system  during  some  specified  period  of  operation.
Such “static” (or “offline”) resource managers schedule all
the tasks and communications prior to any actual execu-
tion taking place. Thus, static resource managers can take
advantage  of  this  knowledge  to,  for  example,  schedule
data transfers from one task to another in anticipation of
the second task becoming ready for execution.  In addi-
tion, static resource managers have more time to compute
task/machine assignments due to their offline operation.

In  contrast,  “dynamic” resource  managers  operate
“online” and hence do not have access to the full range of
information  available  to  their  static  counterparts.
Dynamic  resource  managers  must  schedule  tasks  and
communication while execution of previously scheduled
tasks is taking place, thus placing added emphasis on the
execution  speed  of  the  heuristic  itself.  In  addition,
dynamic  heuristics  cannot  take  advantage  of  visibility
into the future to pre-schedule actions such as communi-
cations.

This paper reports on one potential dynamic solution
to the  ad hoc grid challenge that is based on combining
the “receding horizon” concept from the control commu-
nity with Lagrangian-based resource management meth-
ods found in some modern manufacturing line scheduling
systems. In this initial investigation, the behavior of sev-



eral  possible  variations  of  the  proposed  solution  were
studied  in  a  simplified  situation  as  a  first  step towards
developing an overall solution to the problem. The results
of  these  tests  were  subsequently  compared  against  the
performance from a common static heuristic.

II. Related Work

The Lagrangian approach to constrained problems was
initially developed as a method for dealing with systems
involving nonholonomic constraints – i.e., constraints that
cannot  be  expressed  as  a  function  of  the  form

f r1 , r2 , r3 , ... , t =0 [Go50]. Examples of nonholonomic
constraints include the walls of a container that constrain
the motions of a gas, or a particle constrained to move on
the surface of a sphere. In these situations, the equations
governing the behavior of the system can be solved by
introducing the constraints into those equations through
the use of Lagrangian multipliers – undetermined parame-
ters that are often functions of time.

Since  that  time,  the  Lagrangian  technique  has  been
applied  to  an  ever-increasing  range  of  problems  that
involve  complex  system  equations  and  nonholonomic
constraints [LeM67] [BrH75]. Extending the technique to
the resource management problem where heuristics must
be  bound  by  “hard” constraints  on  precedence,  energy,
and time – all nonholonomic in nature – was a natural fit.

The most common use of the Lagrangian technique for
scheduling has been in the manufacturing area. In these
cases, the problem is to optimally schedule the manufac-
ture  of  parts  in  an  industrial  operation  where  the  parts
require multiple machining operations and have desired
completion  times.  There  is  a  penalty  for  finishing  too
early  or  too  late.  The  machining  operations  are  con-
strained by the available resources in terms of the types of
machines  used,  the  finite  number  of  machines  of  each
type, and the scheduling precedence requirements.

Luh  and  Hoitomt  [LuH93]  successfully  adopted  the
Lagrangian approach by breaking the overall manufactur-
ing problem into a series of sub-problems. This approach
combines  Lagrangian  relaxation  techniques  with  post-
solution scheduling heuristics. The Lagrangian multipliers
attempt  to  measure  the  marginal  costs  associated  with
machine capacity and scheduling precedence constraints.
As dynamic changes in  the manufacturing  environment
occur, the pre-existing optimal values of the Lagrangian
multipliers can be used as a starting point for the compu-
tations for the changed environment. However, the result-
ing Lagrangian-based solutions typically represent  infea-
sible schedules in that there are temporal machine capac-
ity and scheduling precedence constraint violations. The
final  solution  requires  the  use  of  list  scheduling  tech-
niques whereby a greedy scheduling heuristic is used to

sequentially schedule tasks by order of decreasing mar-
ginal costs. The problem is effectively treated as a sched-
uling solution to a static environment and the Lagrangian
multipliers cannot be modified, and generate a guaranteed
feasible  solution,  in  a  continuously  changing  environ-
ment.

Subsequently, Luh et al. [LuZ00] extended the Lagran-
gian technique through the introduction of a neural net-
work  that  adjusted  the  Lagrangian  multipliers  as  the
scheduling  progressed  to  achieve  closer-to-optimal
results.  The key result  in  this work was a proof  of  the
convergence of the Lagrangian relaxation neural network
(LRNN) approach for constrained optimization problems.
There are no requirements on the differentiability of the
describing functions or the continuity of the decision vari-
ables – provided that the evolution of the decision vari-
ables leads the Lagrangian to a global minimization.

This approach works well  for  statically  mapping  the
part  manufacturing  sequence  in  an  industrial  environ-
ment. However, it has two significant limitations:

(a) the  LRNN  formulation  generally  converges  to  a
solution that may not be entirely feasible because of
the difficulty in characterizing some constraints. As
a result, there is a final step that readjusts the map-
ping to ensure the final solution is feasible; and

(b) as  implemented,  the  technique  cannot  respond  to
dynamic changes in the production line, such as the
loss  of  a  machine,  without  rescheduling the entire
production sequence.

Removing  these  limitations  requires  the  introduction
of a second technique, also taken from the controls com-
munity. The receding horizon concept for optimal control
first  appeared  in  the  1960s  as  a  method  for  accurately
controlling  nonlinear  processes  (e.g.,  [LeM67]).  As
described  at  that  time,  the  basic  concept  involved  the
measurement  of  the  current  process  state,  followed  by
rapid computation of the predicted evolution of that state
for  a finite  period  of  time in  the future  (known as  the
horizon). The results of the computation were then used
to control  the process during the horizon period until a
new measurement of the process state is made. This pro-
cedure is repeated throughout the process, thus providing
a piecewise solution to the control problem.

Little  was done  with  the  concept  initially,  primarily
due to the high computational requirements involved in
the prediction portion of the algorithm. However, the con-
cept resurfaced in the late  1970s in the form of  Model
Predictive  Control  (MPC)  –  also  known  as  Receding
Horizon  Control  (RHC) – as  microprocessors  began  to
enter the market. Variants of the technique rapidly spread,
particularly  in  the  petrochemical  industry,  where  eco-



nomic considerations push for the absolute maximum in
production.

Since that time, MPC has emerged as a standard tech-
nique  for  control  of  multivariable,  constrained  systems
[WhS92]. However, although there are many similarities
between the problems of optimal control of dynamic sys-
tems and the scheduling of production tasks in a manufac-
turing environment where there are numerous precedence
and  resource  availability  constraints,  the  application  of
MPC techniques to the problem of resource management
has only recently become the subject of research.

In particular, Pereira and Sousa [PeS97] developed a
hierarchical  computational framework for  the integrated
planning  and  scheduling  of  manufacturing  operations.
The  manufacturing  operations  modeled  are  discrete
events that have been treated as a continuous flow model
at multiple levels of a hierarchical structure. The optimi-
zation occurs with respect to a distinct number of opera-
tions that define the current point of the receding horizon.
Combinations  of  levels  of  hierarchy,  the  length  of  the
time horizon, and degree of task aggregation are used to
analyze  the  trade-off  between  complexity  and  model
accuracy. In the scheduling determination, the operations
of the  machines  are  first  ordered  by criticality.  Then a
feasible  schedule  is  constructed  for  the  most  critical
machines and the allocation and scheduling of the next
lower level of machines is generated. Mathematically, the
optimization step uses a pseudo-Hamiltonian formulation
of the continuous flow problem.

This approach appears to work well for well-described
manufacturing operations where the parameter perturba-
tions are small.  The approach does not demonstrate the
ability  to  be  implemented  in  a  real-time  computational
architecture  with  large  dynamic  changes  in  the  rate  of
task arrivals or machine and communication path disrup-
tions.

This  paper  explores  an  alternative  approach  to  the
existing literature by explicitly pursuing a computational
strategy that lends itself to real-time allocation and sched-
uling decisions based upon a continuously updated opti-
mization problem. The fundamental problem addressed is
one of  optimal allocation of  resources in a constrained,
dynamic, sometimes unreliable, computing grid. The pro-
posed  solution  combines  the  receding  horizon  concept
with Lagrangian multipliers to find the optimal solution
with respect to a global cost function with explicit con-
straint formulations. This approach is particularly attrac-
tive due to its  potential  for  being mapped directly onto
hardware  such  as  digital  signal  processors  (DSPs)  or
field-programmable gate arrays (FPGAs), thus providing
the algorithmic speed required for  deployment  in many
real-time field applications.

III. Ad Hoc Grid Environment

The purpose of this initial study was to assess the per-
formance of the mapping heuristics in three different, but
static,  ad hoc  grid configurations. Dynamic reconfigura-
tion of the grid between the three cases was not permitted
during this initial work. This allowed the effort to focus
solely on the behavior of the heuristics in each configura-
tion, without complicating the problem with the transition
response.

In each case, the heuristics were tested using an appli-
cation consisting of a single task composed of  T 
communicating subtasks. Since both the energy available
and the time for the entire task to complete within the ad
hoc grid was limited, each subtask was provided with two
versions  (a  “primary”  and  a  “secondary”  version)  that
could be executed. The secondary version of each subtask
used 10% of the energy and time of the primary, or “full”,
version, and transferred 10% of the data output to subse-
quent child subtasks. This secondary version represents a
reduced capability designed to provide some lesser over-
all  value  while  consuming  correspondingly  fewer
resources than its primary counterpart.  Thus, the secon-
dary  version  allowed  the  resource  manager  a  greater
range of options to successfully map the complete task,
especially  when faced  with  very  tight  energy  and  time
constraints.

The  estimated  time  to  compute  (ETC)  each  subtask
was  calculated  using  the  Gamma  distribution  method
described in [AlS00].  ETC(i,  j) represents the estimated
execution time of subtask i  on machine j. For this study,
ten different ETC matrices were developed with a mean
estimated execution time for a single subtask of 131 sec-
onds. Each ETC matrix included two classes of machines
(fast  and  slow).  Fast  machines,  on  average,  executed
roughly ten times faster than slow machines. The exact
ratio was determined randomly for each subtask to avoid
any deterministic influence.

The objective of each experiment was to maximize the
number of subtask primary versions (T  100  ) that could be
executed  while  still  completing  the  application  within
specified time and energy constraints. These were subse-
quently chosen to force load balancing across all available
machines.  The  subtask  dependencies  were  given  by  a
directed acyclic graph  (DAG). Ten separate DAGs were
used in the simulations, each generated using the method
described in [ShC04].

In addition, the size of the global data item g(i,j) that
each subtask communicated to another subtask was speci-
fied. The size of each  g(i,j)  was generated according to
the method described in [ShC04]. These values were not
varied across the three ad hoc grid configurations studied



in  this  effort.  The  different  combinations  of  ETC  and
DAG pairs, therefore, provided 100 unique scenarios that
were used for all three cases.

Each of the three grid configurations was distinguished
by a different number of machines M , as shown in Table
1 below. Case A represented the baseline grid configura-
tion where all machines are present. Case B was created
by eliminating one of the slow machines, while Case C
eliminated one of the fast machines.

Table 1. Simulation configurations

Configuration
# “Fast”

Machines
# “Slow”
Machines

Case A 2 2

Case B 2 1

Case C 1 2

Each machine j was characterized by four parameters:
i. the energy capacity of its battery, B  (  j  )  ;
ii. an energy consumption rate for computation per

time unit, E  (  j  )  ;
iii. an energy consumption rate for communication

per time unit, C  (  j  )  ; and
iv. a communication bandwidth, BW(j).

The values of these parameters for both fast and slow
machines are shown in Table 2. These values represent a
rough industry average based on microprocessors and bat-
tery  capacity  on  selected,  currently  commercially-avail-
able machines. Fast machines were typified by the Dell
Precision M60 notebook computer using an Intel MP4M
processor operating at 1.7GHz. The numbers for the slow
machines were taken from typical personal digital assis-
tant (PDA) computers such as the Dell Axim X5 that uses
an Intel PXA255 processor operating at 400MHz.

Table 2. The values of B(j), C(j), E(j), and BW(j)
for fast and slow machines

“Fast” Machines “Slow” Machines

B(j) 580 energy units 58 energy units

C(j) 0.2 energy units/sec 0.002 energy units/sec

E(j) 0.1 energy units/sec 0.001 energy units/sec

BW(j) 8 megabits/sec 4 megabits/sec

The time required to transmit one bit of a global data
item from machine i to machine j was given by:

Using  these  energy  capacities  and  consumption  rate
characteristics  for  the  individual  machines,  a  value  of
34,075 seconds was selected as the time constraint (τ) for
completing  execution  of  the  full  task  based  on  experi-
ments  using  a simple greedy  static  heuristic.  Requiring
the task to complete within this time constraint, subject to
the  available  energy  and  consumption  rates  shown  in
Table 2, forced the resource managers to balance the load
across all available machines.

Several  simplifying  assumptions  were  incorporated
into the simulations:

(a) machines consume no energy when idle, nor do they
consume  energy  when  receiving  information.
Machines  only  consume  energy  when  computing
and  when  transmitting  information  to  another
machine. No energy is consumed when transferring
information between subtasks on the same machine;

(b) each machine is capable of executing only one sub-
task at a time. Communication, whether transmitting
or receiving, does not interfere in any way with exe-
cution;

(c) each machine can simultaneously handle one outgo-
ing data transmission and one incoming data recep-
tion; and

(d) subtasks are available for scheduling as soon as their
input  data  is  available  (i.e.,  when  their  parent(s)
complete execution).  Subtasks cannot begin execu-
tion, however, until all of their input data is trans-
mitted  from the  parent(s)  computing  machine  and
received  by  the  machine  to  which  the  subtask  is
assigned.

IV. Simplified Lagrangian Receding Horizon
(SLRH) Resource Manager

The Simplified Lagrangian Receding Horizon (SLRH)
resource manager owes its name to its dual heritage from
the Lagrangian and receding horizon concepts. The term
“simplified” signifies that the Lagrangian multipliers are
treated  as  constants  as  opposed  to  adjusted  during  the
course  of  the  simulation.  This  results  in  a  less  optimal
mapping,  but  provides  a  faster  and  easier  implemented
algorithm. Assessing the impact of this simplification was
a key element of the study.

The SLRH is fundamentally constructed as a dynamic
heuristic – i.e.,  the algorithm only operates on subtasks
that can be mapped at any given moment, without knowl-
edge of the full range of subtasks in the simulation. In a
truly dynamic environment, each subtask would arrive at
some non-deterministic time. For simplicity in this study,
each subtask was assumed to be available for mapping as
soon as its precedence constraints had been satisfied.

CMT i , j = 1
min BW i  , BW  j 



The basic operation of the SLRH is diagrammed in the
flow chart of Figure 1. The algorithm operates on a clock-
driven basis – i.e.,  the heuristic is executed at specified
time  intervals  as  opposed  to  whenever  a  machine
becomes available. In this study, the algorithm was exe-

cuted at timesteps of  Δ  T   clock cycles (whose value was
determined by experiment, as described in Section VII),
where  each  clock  cycle  represented  0.1  seconds  in  the
simulation.

Figure 1. Flow chart of Simplified Lagrangian Receding Horizon heuristic
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At each specified time interval,  the SLRH algorithm
cycled through each machine in the simulation. For each
machine, the algorithm first checked to see if it was avail-
able at this clock cycle. If the machine was available, then
the algorithm proceeded to attempt to map a subtask onto
it.  If  the machine was not available,  then the algorithm
moved on to the next machine and checked availability on
it. The machines were checked in simple numerical order.
If no machine was available at this clock cycle, the simu-
lation clock was incremented by the specified time inter-
val and the algorithm started again.

In  the  simulation,  the  complete  pass  through  all
machines  was  accomplished  without  introducing  any
unnecessary machine idle time. Thus, a timestep of ΔT=1
clock cycle was permitted, although use of such a value
resulted in lengthy heuristic execution times. The execu-
tion time of the heuristic in a real-time field application,
however, could lead to significantly larger minimum  ΔT
values. Thus, the heuristic execution time is of consider-
able  importance.  Fortunately,  the  SLRH  algorithm  is
amenable  to  a  parallel  hardware  implementation.  This
option  was  not  considered  in  this  initial  study,  but
remains the subject of continued investigation.

If the machine was available at  this clock cycle,  the
algorithm proceeded to collect a “pool” of candidate sub-
tasks, denoted by U. The entire set of unmapped subtasks
was reviewed to determine which ones can “feasibly” be
mapped on the machine at  this iteration.  Feasibility for
each subtask was defined by ensuring that it met two con-
ditions:  (a)  all  of  its  parent  subtasks  were  previously
mapped, and (b) adequate energy remained on the target
machine for that subtask to execute at the secondary ver-
sion level and communicate all the resulting data items to
wherever they might need to go.

Unfortunately,  the  exact  value  of  this  last  quantity
depended upon the mapping of the subtask’s children. The
energy required to communicate data from one machine
to  another  depends  upon  the  two  machines’ respective
bandwidths.  In  addition,  subtasks  mapped  to  the  same
machine  required  no  energy  to  communicate  between
them.

Because  the  subtask’s children  could  not  have  been
mapped  prior  to  this  time,  the  energy  that  would  be
required  to  communicate  to  them cannot  be  accurately
known. The algorithm resolved this uncertainty through a
worst-case approach: the energy required to communicate
to each subtask child was calculated assuming the child
process had been mapped to the lowest bandwidth con-
nection  –  and  hence,  would  consume  the  maximum
amount  of  communication  energy  from  the  subtask’s
machine.

Using this approximation and the execution time for
the subtask’s secondary version on the target machine, the
total  required  energy  was  compared  to  the  available
energy level. If the energy available was not adequate, the
proposed subtask mapping was declared “infeasible” and
not included in the resulting candidate pool.  Otherwise,
the subtask was considered “feasible” and included in U.

This was clearly a conservative approach that poten-
tially excluded a number of acceptable mappings. How-
ever, in this study, the communications energy proved to
be a negligible factor in the calculations. Thus, the use of
the worst-case communications energy was not found to
significantly affect the mapping process.

The decision to map the primary versus secondary ver-
sion was made at a later point – this step simply ensured
that at least the secondary version could be executed on
the  target  machine,  thus  saving  the  algorithm  from
expending effort on subtasks that would eventually have
to  be  rejected.  If  the  pool  of  candidate  subtasks  was
empty (i.e., none of the remaining subtasks could be fea-
sibly mapped on the target machine), the algorithm pro-
ceeded on to the next machine.

If the candidate pool  U was not empty, the algorithm
evaluated each subtask in the pool in terms of the impact
it  would have on a global  objective function.  This was
done  for  both  versions  of  each  subtask.  The  algorithm
then  compared  the  results  of  the  objective  function
evaluation for the two versions, and selected the version
that maximized the value of the objective function. The
selected version was retained in the pool – the other ver-
sion was no longer considered during this iteration of the
program.

The  pool  of  candidate  subtasks  was  subsequently
ordered according to the resulting objective function from
maximum  to  minimum  value.  Proceeding  through  the
ordered  pool  of  candidate  subtasks,  the  program deter-
mined the earliest possible starting time for the subtask
given precedence  and communication  requirements.  No
action was allowed to be scheduled earlier than the cur-
rent  clock cycle (i.e.,  the program would not allow the
scheduler to look backward in time). The first subtask that
was  capable  of  being  started  within  the  specified  time
horizon H was selected for mapping.

Given  the  selected  subtask  and  the  corresponding
specified version, the algorithm assigned the subtask and
version to the target machine and scheduled all incoming
communications.  Finally,  the  algorithm  updated  the
energy levels (including energy used for communications
and subtask execution) of all machines, and stored a his-
torical record of all critical parameters for later analysis.

Once a mapping to the target machine had been com-
pleted,  the algorithm subsequently checked to see if  all



subtasks had been successfully mapped, and terminated if
this had been accomplished. If  some subtasks were still
unmapped, the algorithm continued to loop on the current
machine cycle until all machines had been checked. Once
this  had  been  accomplished,  the  algorithm incremented
the system clock by the specified time step, checked to
see if  the time constraint  τ had been reached,  and then
restarted the previously detailed loop.

Of primary importance to the performance of the
SLRH algorithm is the selection of an appropriate objec-
tive function. In the Lagrangian approach, the objective
function is formed by combining the overall objective (in
this study, maximizing the number of primary version
subtasks that can be executed) with the specified system
constraints on total system energy and application execu-
tion time, AET,  defined as the time at which the last sub-
task is completed. Thus, the global objective function
used for this study can be expressed as a weighted sum of
terms involving the total number of primary version sub-
tasks mapped, the energy consumed by the execution of
all mapped subtask/version pairs, and the AET of the
resulting solution. Using , , and  as the weights, defin-
ing the total system energy (TSE) as

and denoting the total energy consumed by the mapping
(TEC) as

where EC(j) represents the energy consumed on machine
j  by executing all subtask/version pairs assigned to that
machine  (including  all  scheduled  communications),  the
global objective function can be written as:

Although  only  two weights  are  actually  required,  three
weights were used in the study to allow easy investigation
of system performance in the absence of any of the three
terms.

This form of the objective function reflects the heuris-
tic's  focus on  maximizing  the  objective  function  value.
Larger values of  T100 are rewarded, and larger consump-
tion of energy penalized. Use of a negative sign on this
term caused the heuristic to produce very short AET solu-
tions, but with correspondingly lower  T100 values. Given
the stated objective for this study of maximizing T100, this
was considered an undesirable trade-off. Hence, the posi-
tive sign on the final term was selected to encourage use

of all of the available time within the AET's specified time
constraint. 

Each term of the objective function has been normal-
ized  to  the  [0,1]  range.  By  constraining  each  of  the
weights  to  that  range,  and  requiring  that  α+β+γ=1,  the
objective function was confined to the same [0,1] range.
Note that the “hard” boundary conditions on total system
energy and application execution time are now expressed
as a “soft” bias in the objective function, thus making it
possible for solutions formed by this approach to actually
violate a system constraint. In prior work, each solution
was  checked  for  constraint  violation  after  the  mapping
was completed. While this approach is acceptable for the
offline  situations  described  in  that  work,  the  dynamic
nature of the ad hoc grid problem precludes it. The solu-
tions in the dynamic case must therefore be checked for
constraint violation on an ongoing basis.

Thus,  the feasibility  check performed in  establishing
the pool of candidate subtasks U becomes a critical func-
tion. However, this check only verified compliance with
the  energy  constraint.  Verifying  compliance  with  the
specified constraint on AET was accomplished by adjust-
ment of the objective function parameters. All mappings
whose  AET exceeded the specified  τ were rejected,  and
their  (α,  β)  values  adjusted until  the  AET was  brought
into compliance.

V. Heuristics

Three variations of the SLRH heuristic were evaluated.
In  addition,  a  common  static  heuristic  (Max-max)  was
used to provide a baseline for comparison. The heuristics
included:

SLRH-1:  The  Simplified Lagrangian Receding Hori-
zon Heuristic – Variation 1 (SLRH-1) served as the base-
line  variation.  It  operated  identically  to  the  previous
description.

SLRH-2:  The  Simplified Lagrangian Receding Hori-
zon Heuristic – Variation 2 (SLRH-2) followed the SLRH
algorithm  with  a  single  major  distinction.  Whereas  in
SLRH-1 each machine was only assigned a single sub-
task/version pair at a given timestep, SLRH-2 continued
to assign subtask/version pairs to a machine at  a given
timestep until either all pairs in the candidate pool U had
been  assigned  or  no  additional  pairs  could  be  started
within the time horizon. Therefore, subtask/version pairs
would continue to be assigned to machine 1 (for example)
before a new candidate pool was created and any of its
subtask/version pairs were assigned to machine 2. Once
all  machines  had  been  processed  in  this  fashion,  the
timestep was incremented and the heuristic continued as
in SLRH-1.

TEC= ∑
j=0

∣M∣−1

EC  j 

ObjFn , ,=
T 100

∣T∣
− TEC

TSE
 AET



TSE= ∑
j=0

∣M∣−1

B p j 



SLRH-3:  The  Simplified Lagrangian Receding Hori-
zon  Heuristic  –  Variation  3  (SLRH-3)  extended  the
SLRH-2 method by recreating and re-evaluating  U  after
each subtask/version pair assignment. Thus, as a subtask
was mapped,  the heuristic  immediately added that  sub-
task's children to U (assuming all other requirements were
met), re-evaluated all subtask/version pairs in U, and con-
tinued mapping on the same machine.

Max-Max: The Max-Max static heuristic used to pro-
vide  a  baseline  for  evaluating  performance  of  the
dynamic heuristics against this problem was based on the
general  “Min-Min” approach described in [IbK77].  The
heuristic utilized the same objective function as the SLRH
heuristics, but did not involve a receding horizon element.
The heuristic  began  by  creating  a  candidate  pool  U of
“feasible” subtask/version pairs.  However,  for  the Max-
Max  heuristic,  the  definition  of  “feasible” was  slightly
modified from that  used in the SLRH heuristics.  While
the  requirement  that  all  parent  subtasks  be  previously
mapped was retained, the energy requirement was modi-
fied to separately consider each subtask version. Thus, the
“feasibility” of both the primary and secondary versions
were independently assessed. It was therefore possible for
U to  simultaneously  include  both  versions of  the  same
subtask. 

The  Max-Max  heuristic  subsequently  selected  from
within  the  complete  set  U  for  each  machine  that
subtask/version pair that provided the maximum increase
in  the  objective  function.  From  this  subset,  the
subtask/version/machine  triplet  that  provided  the  maxi-
mum increase in the objective function was selected and
assigned to the corresponding machine.

The heuristic allowed a mappable triplet to be sched-
uled for a time prior to the target machine’s availability
time if a sufficiently large “hole” in the existing schedule
could  be  found  that  complied  with  precedence  con-
straints.  This  process  continued  until  all  subtasks  were
mapped.

VI. Upper Bound Calculation

Calculating an upper bound on the number of primary
version subtasks that could be executed on a given set of
machines requires consideration of the imposed limits on
both  time and energy.  An estimate of  the upper  bound
was  computed  for  this  problem  using  the  concept  of
“equivalent  computing  cycles”.  In  this  method,  each
machine contributes a number of clock cycles to the sys-
tem that is determined by the overall time limit for the
scenario,  adjusted  to  reflect  the  speed  of  that  machine
relative to a reference machine. Thus, the method creates
a “pool” of  equivalent  clock cycles  for  the system that

represents the total computing resources available to the
system within the time limit constraint.

As the choice of reference machine was arbitrary, the
approach used in this effort selected the 0th machine. The
first step in the upper bound calculation scans through all
subtasks and calculates the ratio of each subtask’s execu-
tion time on each machine to that subtask’s execution time
on  the  reference  machine.  The  method  then  finds  the
minimum  ratio  (MR)  across  all  subtasks  for  each
machine, given by:

The  average  minimum  ratio  and  associated  standard
deviation for each machine, computed across all ten ETC
matrices for each case, is shown in Table 3 below.

Table 3. Average Minimum Relative Speed

Case
“Fast”

Machine 1
“Slow”

Machine 1
“Slow”

Machine 2

A 0.28 (0.03) 1.65 (0.18) 1.74 (0.3)

B 0.26 (0.03) 1.55 (0.32)

C 1.63 (0.42) 1.59 (0.33)

The minimum ratio is a measure of the absolute mini-
mum  number  of  clock  cycles  on  machine  j  that  are
required to complete the same amount of work as on the
reference machine. Each machine thus contributes a num-
ber  of  “equivalent  cycles” to  the  system’s pool  that  is
equal to the overall time limit divided by the MR for that
machine. For example, a machine whose minimum ratio
was 2.0 (indicating that the time required for any subtask
to complete on it was at least twice as long as on the ref-
erence machine) would contribute a number of equivalent
cycles to the pool equal to the time limit  divided by 2.
This represents the best-case situation, thus ensuring that
the method provides an upper bound on the number of
subtasks that could be executed with their primary ver-
sion.  Thus,  the  total  available  equivalent  computing
cycles (TECC) within the system is given by:

Given  this  pool  of  computing  cycles  and  the  previ-
ously defined total system energy (TSE), the upper bound
calculation proceeded by searching the primary version of
all previously unused subtasks across all machines to find
the  subtask-machine  pair  that  consumed  the  minimum
amount  of  energy.  The  number  of  equivalent  cycles
required  to  execute the primary version  of  this  subtask

MR  j =
∣T∣−1
min
i=0

ETC i , j
ETC i ,0

TECC= ∑
j=0

∣M∣−1 
MR  j



was  computed  by  dividing  its  execution  time  on  that
machine  by  the machine’s MR. If  the  system had  both
enough  total  equivalent  computing  cycles  and  enough
total  system  energy  to  complete  the  subtask,  then  the
number of primary version subtasks that can be executed
was incremented by one and the energy and equivalent
cycles associated with that subtask were subtracted from
the system's resources. This process continued until either
insufficient energy or equivalent cycles remained to com-
plete the primary version of the selected subtask.

The results of the upper bound calculation for the three
simulation cases are shown in Table 4 below for each of
the ten ETC matrices. In general, the upper bound calcu-
lation revealed that the system as a whole had adequate
energy and compute cycles to complete primary versions
of all subtasks for Case A and Case B, although the distri-
bution of those resources across the individual machines
precluded such a solution. This was not the situation in
Case C, where the lack of sufficient compute cycles was
the primary limit on the upper bound.

Table 4. Results of upper bound calculation

ETC
Case A

2 fast, 2 slow
Case B

2 fast, 1 slow
Case C

1 fast, 2 slow

0 1024 1024 817

1 1024 1024 862

2 1024 1024 816

3 1024 1024 654

4 1024 1024 900

5 1024 1024 772

6 1024 1013 733

7 1024 1024 804

8 1024 1024 756

9 1024 1024 724

VII. Experimental Results

Establishing a value for the  ΔT parameter within the
SLRH  variants  was  accomplished  by  considering  the
parameter's impact on both T100 and execution time. Large
values of  ΔT  resulted in fewer iterations of the heuristic
and  potentially  large  gaps  of  unused  computational
cycles, thus causing a reduction in the number of primary
version  subtasks  that  could  be  mapped within  the time
constraint.  Small  values  of  ΔT,  however,  resulted  in  a
large number of heuristic iterations that provided no suc-
cessful mapping of a subtask.

These trends are reflected in the results shown in Fig-
ure 2 for SLRH-1 operating on ETC 0 for two DAGs. The
top two lines in the figure illustrate the impact of  ΔT on

T100 for the SLRH-1 heuristic operating on ETC 0 in Case
A for each of the two DAGs. The figure shows T100 to be
relatively  insensitive  to  ΔT for  mid-range  values.  The
lower two lines, however, illustrate the impact on heuris-
tic execution time under the same conditions. As the fig-
ure  shows,  the  heuristic  displays  a  strong  dependence
between heuristic execution time and ΔT for small values.

Figure 2. Impact of ΔT parameter on SLRH-1

No significant variation in behavior  with respect  to  ΔT
was  found  between  the  SLRH  variants  or  the  various
ETC/DAG combinations.

Similar analyses were performed for  the SLRH time
horizon,  H.  Large  values  of  H allowed the heuristic  to
map subtasks for distant starting times, thereby reducing
the heuristic's flexibility for scheduling subsequent sub-
tasks. However, for this study, the impact of  H on both
T100 and execution time was found to be negligible. Based
on the results of these analyses, values of 10 clock cycles
for  ΔT and  100  clock  cycles  for  H  were  used  in  the
remainder of the study.

A primary objective of the study was to determine the
sensitivity of the Lagrangian Receding Horizon concept
to the objective function weights. A relatively insensitive
heuristic  might  be  able  to  operate  in  an  ad  hoc grid's
dynamic environment without incorporating a method for
online adjustment of the weights. More sensitive heuris-
tics, however, would require such methods to ensure ade-
quate levels of performance.

The sensitivity of the heuristics to the objective func-
tion weights was investigated by first independently vary-
ing the α and β values across their [0,1] range in steps of
0.1 until a general range was found that produced the best
T100 performance,  subject  to  the  energy  and  time  con-
straints. In addition, the heuristic was required to success-
fully  map  all  1024  subtasks  within  both  the  specified
energy and time constraints for that (α,β) combination to
be included in the study. The values were then varied by
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0.02 across this smaller range until an optimal perform-
ance point was determined.

This  optimality  analysis  was  performed  using  each
heuristic  for  each  ETC/DAG  combination  in  all  three
cases. The result of these experiments was a set of (α,β)
pairs for each case, each element of the set containing the
(α,β)  values  that  provided  the  best  performance  with
respect  to  T100 for  a  particular  ETC/DAG combination.
Each set was subsequently analyzed to find the average,
minimum, and maximum values of α and β.

The  results  of  the  analysis  are  shown  in  Figure  3,
below. The dashed lines connect the average value of the
respective parameter resulting from the analysis. The ver-
tical bars in each graph show the range from the mini-
mum to maximum value of the respective parameter for
each case.  The set of  optimal (α,β) pairs for  each case

were  essentially  identical  for  the SLRH-1 and  SLRH-3
variants – thus,  their respective average, minimum, and
maximum values overlay each other  on the graph.  The
SLRH-2 variant, however, was found to rarely produce a
successful mapping of all 1024 subtasks within the time
and energy constraints regardless of the choice of  α and
β.  This  variant  was  subsequently  dropped  from further
consideration and is not included in the graph.

The  SLRH heuristic  demonstrates  a  small  degree  of
variation in α across the various ETC/DAG combinations.
As Figure 3(a) shows, the optimal α value for SLRH per-
formance varied somewhat across the three cases. While
Cases A and B were relatively similar in both the value
and  range  of  α,  Case  C  differed  significantly  in  both
areas. Not only did the optimal value of α change by over

Figure 3. Comparison of (α,β) variability in SLRH and Max-Max heuristics.

(a) α variability for SLRH heuristics (c) α variability for Max-Max heuristic

(b) β variability for SLRH heuristics (d) β variability for Max-Max heuristic
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50%, but the range of values that provided optimal per-
formance shrank a corresponding amount.

The β parameter for the SLRH heuristic, shown in Fig-
ured 3(b),  exhibited even less variation than was found
for the α parameter, with the heuristic optimizing its per-
formance at the same value for every ETC/DAG combi-
nation  in  all  three  cases.  There  was a  slight  change  in
value,  however,  between Cases  A and  B,  and  Case  C.
Off-optimal operation of the heuristic in this last case by
using the same value of β as in Cases A and B resulted in
a loss of performance of less than 5%.

In  contrast,  the  Max-Max heuristic  exhibited  a  very
wide range of optimal  α and  β values, as shown in Fig-
ures  3(c)  and  3(d).  No  direct  correlation  was  found
between  the  optimal  (α,β)  combination  and  either  the
ETC or DAG involved in the simulation. An exhaustive
search was therefore required to identify the optimal (α,β)
pair for Max-Max in each scenario.

Based on these results, it appears that the SLRH heu-
ristic will require a method for dynamically adjusting at
least the α parameter in response to changes in the ad hoc
grid environment.

The results shown in the remainder of this paper utilize
optimal values for α and β for each ETC/DAG combina-
tion. The performance of  the three remaining heuristics
(SLRH-1, SLRH-3, and Max-Max) was evaluated in each
of the three cases. Each result reported is the average of
the outcomes from all 100 ETC/DAG combinations.

Figure 4 compares the performance of  the heuristics
against the primary objective – maximizing the number of
primary version subtasks that could be executed. As the
figure  shows,  the  SLRH-1  variant  provided  roughly
equivalent performance to that  of  the baseline provided

by the static Max-Max heuristic in Case A, both of which
significantly outperformed the SLRH-3 variant.

As expected, both the SLRH-1 and Max-Max heuris-
tics  displayed  a  marked  drop-off in  performance  as
machines are “lost” to the system. The SLRH-1 heuristic
fell off faster than the static Max-Max baseline, however,
indicative of the dynamic SLRH heuristic's more limited
knowledge of upcoming subtasks. The SLRH-3 heuristic
maintained  its  performance  when  losing  one  “slow”
machine.  This  was  attributed  to  its  poor  performance
when  all  machines  were  present,  as  opposed  to  being
inherently more resilient than the other heuristics.

Performance of all three heuristics relative to the cal-
culated  upper  bound  is  shown in  Figure  5  below.  The
SLRH-1 performed well for Case A, achieving mappings
that  averaged  T100 values  better  than  60% of  the upper
bound and were slightly better than the static Max-Max
baseline.  Both  of  these  heuristics  suffered  a  significant
drop in performance when a machine was removed from
the system, with the Max-Max baseline heuristic showing
itself to be slightly less sensitive to the loss of a machine.
As  the  figure  shows,  however,  the  performance  impact
relative to the upper bound was relatively independent of
the removed machine's type.

Performance  of  the  SLRH-3 in  Case  A was signifi-
cantly poorer than the other heuristics. However, the heu-
ristic proved to be fairly insensitive (relative to the upper
bound) to the loss of machines, regardless of type.

Figure 5. Heuristic performance vs. calculated
upper bound

The average execution time for each of the heuristics
to successfully map all 1024 subtasks is shown in Figure
6. Timing experiments were conducted using the Python
2.3.3 scripting language on a non-dedicated 2.1GHz dual
Xeon processor  computer  with  2GB RAM and  512KB
L2-cache, running  RedHat Linux version 9.0.  Although
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Figure  4.  Comparison of  heuristic  performance
based on number of primary versions mapped
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the code was carefully written, no significant attempt to
optimize the code for execution time was made. The val-
ues shown represent the average heuristic execution time
across all ETC/DAG combinations for each case, with the
optimal values of α and β used for each ETC/DAG com-
bination.

Execution  times  of  the  Max-Max  baseline  heuristic
were  relatively  constant  across  the  three  cases,  as
expected  from  the  static  nature  of  that  heuristic.  The
SLRH-3 variant displayed significant sensitivity to loss of
machines as this dictated consideration of a larger number
of  alternative  mappings  at  each  iteration.  In  contrast,
SLRH-1 showed only a small increase in execution time
when losing a “slow” machine, and actually reduced its
execution time significantly when losing a “fast” machine.
This was attributed to the heuristic's ability to efficiently
utilize   mappings of subtasks' secondary versions to take
advantage of the energy available on the “slow” machines
without violating the  specified constraint on AET.

Figure 6. Comparison of average execution time
of heuristics

Significant speed improvements over the performance
shown in Figure 6 may be possible using compiled lan-
guages and through further optimization of the code. In
addition, tests on SLRH-1 indicate that execution speed
improvements of 15-20% are achievable through elimina-
tion  of  bookkeeping  associated  with  instrumenting  the
experiment and not associated directly with the algorithm.

For dynamic scenarios, comparing the relative value of
the heuristics requires definition of a metric that reflects
both the value of the mapping produced by the heuristic,
and the execution time of the heuristic itself in producing
that mapping. A simple metric based on the ratio of T100 to
the heuristic's execution time is shown in Figure 7.

Focused solely on the performance of the heuristic in
terms  of  the  primary  objective,  the  metric  favorably

reflects the execution speed of the SLRH-1 variant rela-
tive to its SLRH-3 cousin. Both SLRH-1 and Max-Max
continue to exhibit relatively equal performance for Cases
A and B. However, the heuristics show a marked depar-
ture  from that  parity  when confronted  by  the loss  of  a
“slow” machine. The dynamic SLRH-1 significantly out-
performed the static Max-Max heuristic in this scenario,
primarily due to its faster execution time.

Figure 7. Simple metric of performance per unit
of heuristic execution time

VIII. Summary

This  paper  presented  one  potential  method  for  effi-
ciently  and  robustly  managing  both  computational  and
communication  resources  in  a  dynamic,  unpredictable
environment.  Formed  by  combining  Lagrangian-based
resource management methods with the receding horizon
concept  from  the  control  community,  the  Simplified
Lagrangian  Receding  Horizon  heuristic's  performance
was evaluated against several cases reflecting the loss of
machines from the system.

  With all machines present, the SLRH heuristic per-
formed comparably to the baseline provided by a static
Max-Max  heuristic  in  terms  of  T100.  The  heuristic  dis-
played a significant sensitivity  to the loss of  machines,
but performed very well when measured against its exe-
cution time.

The need for on-the-fly adjustment of the Lagrangian
parameters in Lagrangian receding horizon heuristics was
also demonstrated. When confronted with changes in the
system's available resources, the heuristic was particularly
sensitivity  to  the  T100 multiplier,  thereby indicating that
this value requires adjustment whenever the system envi-
ronment changes. In contrast, the constraint multipliers (β
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and γ) may either require less frequent adjustment or per-
haps be held constant.

The  static  nature  of  the  Max-Max  heuristic  used  to
provide a baseline for evaluating the performance of the
dynamic SLRH heuristics precludes its use in ad hoc grid
environments.  However,  the  comparable  performance
provided  by  the  SLRH-1  heuristic  in  this  initial  study
indicates a significant potential to efficiently manage both
computational  and  communication  resources  in  this
dynamic, unpredictable environment – despite the lack of
full knowledge of tasks that may be assigned to the grid.
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