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Problem Description
Ad hoc computing grids
 Heterogeneous collection of computing and 

communication resources without fixed 
infrastructure

Challenges
 Assets can appear/disappear without warning
 Communication links prone to failure, noise

Required
 Resource manager capable of rapid response to 

changing conditions



  

Approach
Lagrangian objective function

 Combine constraints into objective function using time-
dependent parameters (Lagrangian multipliers)

Receding horizon
 Optimal control method
 Predict evolution of system for limited time into future
 Control based on prediction until next measurement of 

system state

Initial experiment
 Determine performance under different conditions
 Evaluate sensitivity of critical parameters



  

Simulation Environment
Two types of machines – fast, slow

 Differentiated by cpu speed, energy consumption rate, 
communication bandwidth

Single application
 1024 inter-communicating subtasks connected in directed 

acyclic graph (DAG)
 Two versions of each subtask: 100% and 10%
 Estimated time to compute provided for each

subtask/machine/version triplet
 100 ETC/DAG combinations

Three Cases
 A: 2 fast, 2 slow
 B: 2 fast, 1 slow
 C: 1 fast, 2 slow



  

Objective
Maximize number of 100% subtasks 
completed (T100)
 Within specified time, energy constraints
 Must complete all subtasks

Objective function

TEC = Total Energy Consumed
TSE = Total System Energy
AET = Application Execution Time
α,β,γ = Lagrangian multipliers [0,1], α+β+γ=1
τ = time constraint



  

Heuristics: Max-Max (static)

Provide performance baseline
 Static heuristic – not suited to dynamic environment

Two step process
 For each machine, pick subtask/version pair that maximizes 

ObjFn
 From that set, select machine/subtask/version triplet that 

maximizes ObjFn

No receding horizon
 Considered all subtasks, entire mapping simultaneously
 Selected triplet could be scheduled for any time provided 

adequate “hole” in existing schedule can be found



  

Heuristics: SLRH* (dynamic)

At each time step
 For each machine, if available…

 Collect set of all subtasks U whose
 Precedence constraints are met
 Adequate energy to execute at least 10% version
 Meet worst-case communications

 Evaluate ObjFn for each subtask in U, both versions
 Order U based on ObjFn
 Find first subtask/version pair that can be scheduled to 

start within time horizon H – map it

 Increment time by time step ΔT

*Simplified Lagrangian Receding Horizon



  

Two Additional Variants

SLRH-2
 Assign all subtask/version pairs until

 All pairs assigned
 No additional pairs can be started within time horizon

 Unable to successfully map all subtasks – dropped

SLRH-3
 Re-create, re-evaluate U after each assignment

 Catch new subtasks that meet precedence constraint
 Continue assigning pairs until no additional pairs 

can be stated within time horizon



  

SLRH: Closer Look
Simplified Lagrangian
 No dynamic adjustment of α, β, γ
 Acceptable for this experiment

No guaranteed non-violation of constraints
 Explicitly checked execution time constraint, 

energy constraint

Setting ∆T & H
 Experimentally determined
 ΔT = 10 clock cycles
 H = 100 clock cycles



  

ObjFn Parameters: α, β

α

β

SLRH Max-Max
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Summary
SLRH performance
 Comparable to static baseline
 Appears relatively insensitive to characteristics of 

application
 May require dynamic adjustment of the T100 

Lagrangian multiplier to reflect changes in 
machine availability

Speed needs improvement
 Non-optimized scripting language used
 Convert and optimize

Questions


