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This paper concerns the development of a hierarchical framework for the integrated planning
and scheduling of a class of manufacturing systems. In this framework, dynamic optimization
plays an important role in order to define control strategies that, by taking into account the
dynamic nature of these systems, minimize customized cost functionals subject to state and
control constraints. The proposed architecture is composed of a set of hierarchical levels where
a two-way information flow, assuming the form of a state feedback control, is obtained
through a receding horizon control scheme. The averaging effect of the receding horizon
control scheme enables this deterministic approach to handle random and unexpected events
at all levels of the hierarchy. At a given level, production targets to the subsystems immedi-
ately below are defined by solving appropriate optimal control problems. Efficient iterative
algorithms based on optimality conditions are used to yield control strategies in the form of
production rates for the various subsystems. At the lower level, this control strategy is further
refined in such a way that all sequences of operations are fully specified. The minimum cost
sensitivity information provided in the optimal control formulation supports a mechanism,
based on the notion of a critical machine, which plays an important role in the exploitation of
the available flexibility. Finally, an important point to note is that our approach is particularly
suited to further integration of the production system into a larger supply chain management

framework, which is well supported by recent developments in hybrid systems theory.
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1. Introduction

The wide range of extremely difficult and unsatisfactorily
answered issues arising in the design and development of
control and planning architectures for CIM systems, makes
it a challenging task subject of active research in spite of the
strong effort that have been undertaken in the past decades
by a large R&D community, (Gershwin et al., 1984;
Friedman et al., 1992). This effort has been strongly mo-
tivated by the important role that optimal planning and
scheduling of manufacturing systems play in the competi-
tive global environment that most industries are facing
today.

A significant body of R&D work searching for optimi-
zation of manufacturing policies deals with frameworks
whereby the typical problem (French, 1982; Hu and Ca-
ramanis, 1992) of scheduling a fixed number of jobs with
known processing requirements on a given set of machines
so that some typical performance measure is minimized, is
usually formulated as a combinatorial optimization pro-
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blem. Although an efficient approach based on a La-
grangian relaxation technique is presented in Luh and
Hoitomt (1993), typically, solution methods suffer from the
‘curse of dimensionality’ and require the consideration of
heuristic algorithms which can yield good solutions from a
mathematical point of view. The major drawback of these
approaches lies in the fact that they do not involve an
adequate description that takes into account the true dy-
namic nature of the addressed manufacturing systems.
These may be viewed as discrete event dynamical systems
whose state evolution, governed by several decision layers,
occurs in different time scales and is affected by undesirable
perturbations (Gershwin, 1987, 1989; Sousa, 1991; Sousa
and Pereira, 1992; Chauvet et al., 1997). For this reason, a
paradigm dynamical optimization enabling the integration
of planning and scheduling activities constitutes a prom-
ising framework. Furthermore, the integration of the de-
cision-making structure of the production system within a
larger framework encompassing the relevant supply chain
is an important consideration strengthening the links with
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the strategic management of the enterprise (Leach et al.,
1996; Pfohl, 1996).

This work was motivated by the analysis of two different
classes of production systems having in mind the respective
integrated planning and scheduling. One is a high-volume
semiconductor assembly factory where the propagation of
work-in-progress inventories through the system causes
undesirable instabilities (Sousa, n.d.). The other is a textile
company composed of spinning, dyeing and weaving units
whose coordinated control, involving an accurate forecast
of delivery times, represents a major difficulty (Gongalves
et al., 1997). This analysis revealed that the set of control
problems arising in both classes of production systems was
essentially the same and suggested a general framework
which has been gradually maturing.

The solution approach to these problems involves an
issue of primary interest consisting of the definition of the
required control space by specifying a structure of buffers
preceding some groups of machines which are effective in
imposing the required behaviour. We have proposed a hi-
erarchical control structure (Sousa and Pereira, 1992, 1994)
that, for a given time horizon, and given demand and
supply constraints profile, permits us to find a robust and
least suboptimal admissible schedule for the manufacturing
system.

In order to reduce the complexity and problem size un-
derlying the hierarchic decision-making structures of these
production systems, which involve an extremely large
number of machines, product-types and operations, a
method combining an adapted aggregation of parts and
machines with the use of continuous measures of the oc-
currence of discrete events was adopted. The higher the
level of the hierarchy, the longer is the considered time
horizon and the greater is the degree of aggregation of
parts and machines performed in such a way as to find the
best compromise between complexity and model accuracy.
In this way, tractable mathematical descriptions of the
dynamic behaviour are obtained and taken into account in
the formulation of customized optimal control problems. It
is also important to note that the adopted adaptive re-
ceding horizon scheme contributes to minimize the adverse
effects in the control policy due to random events, model
inaccuracy (e.g., set-ups) and the mismatch between models
at the different levels of the hierarchy.

Finally, another point to note concerns the fact that an
integrated decision support system was designed for a
spinning unit of a textile company (Gongalves et al., 1997)
based on the proposed control framework. In order to
satisfy the proposed objectives and constraints, a systems
engineering process was carried out to reveal the functional
architecture, which was mapped on a three-level conceptual
architecture.

The remainder of this paper is organized as follows.
After commenting on related work in Section 2, we present
a detailed description of our approach in Section 3. Here,
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special attention is paid to the modelling approach leading
to the optimal control problem formulation. In Section 4,
the solution method is explained in detail. Then a receding
horizon algorithm incorporating the higher and lower level
solution methods is presented. In Section 5, a brief refer-
ence is made to the methodology adopted in order to de-
sign the decision support system for the spinning unit of a
textile company using the proposed framework as a con-
ceptual basis. Finally, in the last section, we state some
concluding remarks and point out directions for future
research.

2. Related work

Several researchers have used various control theoretical
approaches to address the production planning and
scheduling problem.

Concerned with computational tractability and the defi-
nition of control policies based on realistic models, Kim-
enia and Gershwin (1983) developed a pioneering approach
to the production control of manufacturing systems with
failure-prone machines. A multilevel hierarchical control
algorithm, involving stochastic optimal control at the first
level, was proposed. The control variables of this problem
are the production rates for the whole system. In this way,
the behaviour of the system is captured in an aggregated
form, since the huge number of occurrences of discrete
events is replaced by a small number of real continuous-
time functions, representing the rates at which they occur.
The computation of those rates, in the form of a feedback
control law, by considering a quadratic approximation for
the corresponding cost-to-go function and a tracking pol-
icy, the staircase policy, was proposed in order to transform
the continuous production rates into the discrete loading
times of jobs into the system. The notion of ‘hedging point’
was also introduced to designate the optimal buffer level
with which to hedge against future failures. This framework
was further extended in Gershwin (1987, 1989) in order to
cope with the multiple time scales related to the occurrence
of desirable (production activities) and undesirable (set-ups
and machine failures) events. The system is seen as a set of
hierarchical levels (where each level corresponds to events
taking place at a given frequency) and the approach con-
sists of finding an at least suboptimal frequency for each
controllable activity subject to appropriate constraints
imposed by the higher-level activities.

Eleftheriu and Desrochers (1987) have extended the
concept of the hedging point developed by Kimenia and
Gershwin (1983), in order to find a hierarchical controller
that minimizes product inventory surplus and backlog
costs while keeping production rates as close as possible to
demand. Perkins and Kumar (1989) have defined sched-
uling policies which ensure the stability of inventory in sys-
tems where machines are not entirely flexible. Akella et al.,
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(1990) have developed a hierarchical control scheme for a
failure-prone parallel multicell flexible assembly line. Then,
based on a tractable model obtained by assuming a number
of simplifying assumptions, a stochastic optimal control
problem is formulated and a solution method is proposed. A
quadratic approximation to the cost function is used in order
to find a computational solution to the problem.

The work of Sharifnia (1992), Connors et al., (1992) and
Egilmez and Sharifnia (1994) is particularly interesting
since it relates directly to our approach (Sousa, n.d.; Sousa
and Pereira, 1992, 1994) by using the continuous flow
production models. Sharifnia obtained a linear formulation
for the continuous flow approximation of the system and
proposed to re-solve the problem whenever significant
random disturbances or deviations from the optimal con-
tinuous targets were observed. Connors et al. have focused
on myopic control policies which require some important
simplifications to the original problem formulation and,
consequently, do not necessarily yield an optimal solution.
In the framework of continuous flow approximations it is
particularly difficult to model set-up operations. Using two
different approaches, Srivatsan and Gershwin (1991), Hu
and Caramanis (1992) and Bai and Elhafsi (1994) obtained
an interesting description of the optimal set-up behaviour
of certain manufacturing systems. In the last reference, the
characterization of the optimal solution to the problem of
scheduling a single deterministic machine with a two-part-
type set-up revealed the complexity underlying this very
simple problem.

Although in a static optimization framework, Luh and
Hoitmont (1993) have used an interesting interpretation of
Lagrange multipliers as a vector of prices in order to
achieve the coordination of solutions to a set of subprob-
lems obtained by Lagrangian relaxation. This plays a role
analogous to our adjoint variable associated with the so-
lution to the optimal control problem. Recognizing the N-
P hard complexity of the problem of optimizing manu-
facturing schedules, Chu (1996) has proposed a unified
framework of a different character. Knowledge acquired by
a neural network during the running of the production
system is used in order to select the best scheduling algo-
rithms for a given context.

In Chauvet et al. (1997), a unified approach to the hi-
erarchical management and control of production systems
developed in the environment of algebra and factory dy-
namics was presented. This approach leads to a new hier-
archical structure and a new aggregation concept where the
modularity of dynamic and decision models within all
levels of the hierarchy constitute the unifying link.

3. Proposed approach

Starting with the basic description of the manufacturing
system, this section addresses the hierarchic control struc-
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ture composed of several interconnected decision-making
problems at various levels. Particular attention will be
drawn to the amenability of the proposed structure w.r.t.
the integration in a wider context of supply chain man-
agement.

3.1. Manufacturing system description

In order to describe the model of the manufacturing system
the following notation is required:

N  — time units of the planning horizon;

m  — machine-type index, m = 1,..., M;

n, — number of type m machines operating in par-
allel;

i — product-type index;

T,  — vector of processing times at a machine of type
m with components 1,,;;

U, — production rates constraint set of type m group
of machines;

Vp  — product input rate constraint set;

Q = U} x--- x Uy x Vp — the global control con-

straint set.
At time f:

u,(t) — vector of production rates for the group of
machines of type m with components u,, ;(¢);

v,(t) — vector of the input rate of products of type p to
the system;

u(t) = col(ui(t),...,upm(t),v1(8),...,vp(2));

b (t) — vector of buffer contents for the group of ma-

chines of type m with components b, ;(¢);

) = col(bi(t),...,bm(2));

d(t) = col(d(t),...,dp(t)) — vector of the demand
profile for the system.

Here, col(...) is a column vector with entries ordered as
presented between parentheses, a - b is the inner product of
vectors a and b, ¢ is the null vector, and A x B denotes the
Cartesian product of sets 4 and B.

The class of manufacturing systems we address in this
paper is generally described by the following features:

(1) There are P and M product and machine types
respectively;

(2) The entity machine-type m is characterized by n,,
machines operating in parallel (the same regime). If two
identical machines are not coupled then they should be
included in different machine types;

(3) Discrete part and continuous processing is allowed
within the same system’s model;

(4) Assembly and disassembly of discrete products are
considered;

(5) To each product type there corresponds a set of
alternative routings or flows. Each routing specifies a se-
quence of operations at pre-defined machines. Reentrant
flows may be considered;
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(6) Operation in the system are specified by product and
machine types with known processing times;

(7) Multiple visits to a machine, by the same product,
are permitted;

(8) Some machines are entirely flexible, while others
may require a deterministic set-up time during transition
between two set-up states;

(9) Demand profiles, d,(f), are known a priori;

(10) It is permitted to build inventories before some
machines. The inventory associated with a machine is de-
noted as the buffer of the machine.

These hypotheses imply that the flow control modelling
approach provides a good approximation to the behaviour
of the manufacturing system by using continuous produc-
tion rates to describe the occurrence of discrete events. It is
clear that the quality of the approximation is directly
proportional to the inverse of the highest processing time in
the system. In particular, this approach is also amenable to
incorporate continuous processing.

The existence of a buffer before a certain machine ex-
tends the set of feasible solutions and permits greater
controllability, since products can be held for some time. It
is justified in order to:

(1) Adapt production rates from different machines;

(2) Ensure the full utilization of bottleneck machines;

(3) Build inventories to support types of generalized
hedging point strategies to deal with future failures or set-
ups in feeding machines;

(4) Uncouple the behaviour of machines;

(5) Provide the means for the system to respond to
demand which may instantancously exceed the available
capacity.

3.2. The optimal control problem

In this section we describe an instance of the various con-
straints which have to be satisfied by the control strategy
while minimizing the cost functional. The consideration of
set-up times would make the model much more complex
and it would obscure the main idea of this paper. There-
fore, we assume they are negligible compared to the pro-
duction times and consider the corresponding machines
entirely flexible.

Capacity constraints depend not only on the intrinsic
properties of isolated machines but also on the system’s
operating point and therefore they will appear naturally in
the system’s dynamic equations.

It is relatively straightforward to show that, at time ¢, the
vector of production rates u,, (f) corresponding to a group
of ny,, flexible machines of type m satisfies the following
inequalities:

T - Up(t) <np Vm (1)

un(t) > ¢ (2)
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where this inequality should be understood component-
wise. This set of feasible production rates assumes the form
of a convex polyhedron (Sousa, n.d.). Machines with sim-
ilar operating properties and not separated by buffers may
be grouped so that their joint behaviour is completely de-
scribed by an unique equivalent machine whose capacity
constraint is also a convex polyhedron that corresponds to
the intersection of k convex polyhedrons (Sousa, n.d.).

In this problem the vectors of buffer content b(¢) and
production rates u(¢) play the role of state and control
variables respectively. A particular instance of a discrete-
time version of the optimal control problem requiring the
demand to be necessarily satisfied within the due date may
be stated as follows:

N
Minimize Z{clTb(t) +d"

t=1

>0 ulk) —d(k)] } (3)

k=0

subject to:
b(0) = by
b(t+ 1) — b(t) = Au(t) (dynamic equation)
b(t) > ¢ (nonnegative buffer content)
u(t) € Q; (capacity constraints)
S i—olO - u(k) — d(k)] > 0 (demand satisfaction)

where the last four relationships should hold for all values
of ¢t and are understood componentwise. A is a matrix
specifying the flow of parts, and O indicates outbound
products which may include semifinished parts. Note that,
for the inbound components of u, Q; may represent the
supply constraints whose profile may vary with time in a
either deterministic, random or ‘controlled’ way. The third
constraint not only prevents the buffer content from be-
coming negative but also represents the capacity depen-
dence on the operating point. This situation arises when the
buffer between adjacent machines is empty and it is not
possible to input to the system the relevant semifinished
part. In this situation the production rates of those ma-
chines are equal and limited above by the capacity of the
slowest machine.

The first component of the cost function (Equation 3)
penalizes the buffer content in order to decrease the cycle
time for all products. The second component contributes to
the reduction of the excess of output w.r.t. demand. The
cost functional could also incorporate other typical objec-
tives of manufacturing management organizations, such as:

(1) Penalization of sudden changes of the system con-
figuration or backlogs;

(2) Preservation of the flexibility of the current decision,
in the sense that the decision made at the present time
keeps options open in the future. In Lasserre and Roubelat
(1985), measures of flexibility are presented.

Obviously, a multipart machine set-up could be included in
the model of the system dynamics. In this case some con-
tinuous approximation to the set-up operation is required
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in order to ensure the regularity of the state dependence of
the dynamics required by the applicability of the optimality
conditions. We remark that, when the set-up time is neg-
ligible w.r.t. to each single part operation time, the added
complexity (e.g., Bai and Elhafsi, 1994), together with the
additional analysis to ensure the validity of the limiting
procedure of the approximation scheme may bring little
value in the face of naturally occurring random events as
well as model mismatch inherent to the aggregation pro-
cedures. However, when the set-up operations are signifi-
cant, then a hybrid automata model (Alur et al., 1993)
should be adopted where different dynamics are considered
for each one of the discrete states. We will not dwell on this
point, but we just mention that the different states may
correspond to the various types of set-ups and of multiple
part configurations of the machine and that the discrete
state transitions are part of the control solution which, in
this framework, are obviously subject to optimization. It
should also be noted that a hybrid model is needed
whenever a major reconfiguration is in order, either im-
posed by a major disruption, or as a result of a strategic
decision in order to improve the overall system’s perfor-
mance.

Although this problem is not in a form to which our
solution method based on the maximum principle (Halkin,
1966) might be applied directly, it is straightforward to
conclude that the following change of variables:

e(t) = zt:O ~u(k), d(t) = zt:d(k), t=0,...,N
k=0 k=0

0)

t) = col(b(¢), e(t

= diag({,1); d"
(t) = col(c,d)

0u(0),  d(0) = d(0), u(r) = diag(u(r), u(t + 1))
)); A = diag(4,0)
(

t) = col(¢,d(t))

e
B(
G

Q)

being 7 and , respectively, the identity and the null ma-
trices, ¢, the null vector and col(4, B) and diag(A4, B),
respectively, column block and diagonal block matrices
with components 4 and B, the original problem is, for
feasible demand profiles, converted into the following
standard problem:

Minimize SY | [e7b(¢) + d,"d(¢)] subject to

G - b(0) = col(by, Ou(0)) (4)
b(t+1)—b(t) = Au(t), t=0,...,N—1 (5)
G- b(t)>d*(t) t=0,....N (6)

u(t) € Q x Qg

In the next section is presented a method to compute the
solution of this problem which establishes the production
rates for all the machines of the system. These are the in-
puts to the lower level of the hierarchy in the form of
production targets that will enable the generation of the
schedule for all the machines of the system.
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Before closing this section, three remarks should be
made w.r.t. to the problem formulation.

The first one concerns the fact that we considered vectors
¢ and d; as fixed per part X time-unit costs incurred in
maintaining inventory. However, a different meaning of
per-unit value could be attached to these coefficients. These
parameters could be part of the decision making and de-
fined at the upper level if a wider framework enabling the
integration of the production system in a supply chain
management system is considered.

The second one concerns the fact that this framework
encompasses other problem formulations such as (those
resulting from): withdrawing the constraint of Equation
6 and penalizing the tardiness in the objective function;
introducing additional non-controllable controls in the
dynamics to take into account random events, set-up
effects on capacity, model mismatch introduced by the
aggregation procedure, etc. In this last formulation, the
solution method would seek to optimize the controllable
inputs for the worst case of the non-controllable ones.

Finally, the third remark concerns the dynamics which
could be given by another type of state transition scheme,
as far as are retained semi-group properties with at least a
Lipschitz continuity dependence on the state variable.

4. Solution method

In order to keep the exposition clear, we will consider a
two-level hierarchy which, for simpler systems, might be
reasonable and which captures all the essential ingredients
of the presented approach. The approach to solve the
whole problem consists of embedding the two level hier-
archy of solution stages in a receding horizon control
framework. The higher-level stage generates production
rate guidelines for real-time operation, dealt with by the
lower-level stage. In the following we will describe the three
components of the solution method.

4.1. Higher-level stage

An algorithm developed in Pereira er al. (1991) has been
used in order to find the set of optimal production rates
which are the output of the first stage. This is an iterative
procedure using feasible descent directions to search for a
control function satisfying necessary conditions of opti-
mality (Clarke, 1983).

Note that this algorithm uses the maximum principle for
optimal control problems in the absence of state con-
straints such as Equation 6. However, an exact penaliza-
tion result in Clarke (1983) implies that the given problem
has the same solution as another one where state con-
straints are not present and their violation is accounted for
by penalizing the cost functional as follows:
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XN:{ETIE(t) +d"d(t) + K e" max[0,d"(t) — G - b(1)]} (7)
t=1

where ¢ = col(1,1,...,1), the max operation is understood
componentwise and K > 0 is a sufficiently large constant.

The maximum principle applied to this problem states
that if (b(¢),u(t)) is an optimal control process then the
control policy u(#) maximizes on Q , for each ¢, the map:

u— H(t,b(t), p(1), u) (8)
The pseudo-Hamiltonian H (¢, b(¢), p(t), u) is defined by:

u)
P+ D)[b(r) + A()u(0)] — {e(07b(0)

IB(E) + AOu(0)) - {ed)ble) )
+dyTd(t) + Ke"max[0,d" (t) — G - b(1)]}

where the adjoint variable p(¢) satisfies:
p(N)=0and p’(t) = p'(t +1) —e(0)" —k"(1) ~ (10)

where k7(t) = K(a1,02,...,0,), z is the state space dimen-
sion, and o; is given by 1 if d'(t)>G-b(t),—1 if
d’(t) > G- b(t);, and any point in [—1, 1] otherwise.

Once the initial buffer contents b(0) = by € R? and the
weighting factors ¢ € R* are known, the algorithm de-
scribed below will produce, after a number of iterations, a
control policy yielding a local minimum. Note that in this
case, these conditions are also sufficient. The basic version
described in Pereira et al. (1991) is:

Step 0. Initialization

Set i := 0 (iteration counter).
Choose a feasible control policy, u;.

Step 1. Computation
Compute:
b;, by using Equations 3, 5 and 4; p;, by using Equation
4;
V.H;(u;), the gradient of the pseudo-Hamiltonian (de-
fined by Equation 9) with respect to the con-

trol;
Ca(u;), the cone of feasible control directions at u;.

Step 2. Test of optimality

If V,H;(u;) € C;’d(u,-), the negative polar of Cy;(u;), then the
optimal policy is found; stop.

Step 3. Update of control
Let u;y1 = Po (u; — sV Hi(u;)), where Po(z), the projection
of z on Q, is the point in Q closest to z and s; is the solution
to the one-dimensional subproblem

Minimize [J(Po(u; - sSVH;(u;))) : s > 0]

Here J(u) is the integral function in Equation 7 expressed in
its total dependence on the control.
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Step 4
Seti =i + 1 and go to step 1.

By using relatively standard arguments (Pereira ez al.,
1991) it is concluded, that, under fairly standard hypothesis
on the data, this algorithm produces a strictly decreasing
sequence of controls converging to a minimizer.

Note that the constant K mentioned above is not known
a priori. One way to overcome this difficulty consists of
starting with a relatively small value and, as iterations
proceed, increasing it in a multiplicative fashion.

Since this algorithm is based on the maximum principle
which yields conditions of a local variational character,
convergence is only ensured when the considered a priori
estimate is in a relatively small neighbourhood of the so-
lution. However, this condition is fulfilled in our frame-
work, since this optimal control problem is to be solved
every time there is a relatively small shift of the time ho-
rizon in the implementation of the receding horizon scheme
and the initial optimal estimate for the above algorithm is
taken as the solution to the previous problem.

In Pereira and Sousa (1993) another algorithm based on
the Pontryagin-type necessary conditions of optimality for
differential inclusion problems was presented. By allowing
the search for optimality without using gradients w.r.t. the
control variable, it is better suited to deal with nonsmooth
problems.

4.2. Lower-level stage

The decision problem at this stage consists of defining for
each subinterval of the time horizon fully detailed discrete
parts release, routing and machine scheduling decisions so
that the aggregated production targets given in the form of
production rates by the higher level problem are met and,
simultaneously, the best use of the available resources is
made. In order to accomplish this function, a wide variety
of techniques ranging from optimization procedures (Luh
and Hoitomt, 1993) to fixed policies and reactive logical
rules (French, 1982), as well as combinations of these, is
available, and the nature of the specific subsystem being
considered dictates its selection.

However, since the optimal control formulation pro-
vides minimum cost sensitivity information via the adjoint
variable, this should be used in the algorithm described
below so that the adverse effects of random events, ag-
gregation model mismatch and model uncertainty, are
minimized.

Step 1

Define a list of the machines ordered by their criticality. As
we mentioned before, the more critical the machine the
more it contributes to the cost increase when subject to
admissible perturbations at the optimal nominal trajectory.
In Vinter and Wolenski (1994), it is shown that the adjoint
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variable, defined in the statement of the maximum princi-
ple, provides this valuable piece of information.

Step 2

Concentrate first on the scheduling of all the most critical
machines in such a way that the sequence of operations is
globally compatible, i.e., satisfying flow and machine
constraints. If realistic dynamic constraints are taken into
account at the higher-level optimal control problem and
the demand profile is feasible, then at least one such se-
quence exists. Product processing times are used to trans-
form continuous production rates into sequences of
discrete events in this process. In critical machines, pro-
cessing times play the role of variable discretization inter-
vals. When a machine is not working at its full capacity,
this variable discretization interval, corresponding to the
time gap between the occurrence of consecutive production
operations, is determined from the production rates.

Step 3

Allocate and sequence operations in the set of machines
with the critical degree immediately below so that the set of
all sequenced operations is feasible. Repeat this step until
all the operations have been sequenced.

This procedure does not guarantee the uniqueness of the
resulting machine schedule and some iterations may be
needed to obtain a globally compatible sequence of oper-
ations for the whole system. This marginal degree of free-
dom might be used in order to cope with unexpected events
arising in practical situations. For more significant per-
turbations, the suboptimality margin for the higher level
problem should be increased so that a larger degree of
flexibility and hence adaptivity is allowed. This type of
consideration was discussed with detail in Lasserre and
Roubelat (1985).

4.3. Receding horizon strategy

We begin by describing this strategy in the form of an
algorithm. Denote the optimal control problem with initial
conditions (x, fo) and horizon N, as described in Section 3,
by P"(xo. 10).

Step 1. Initialization

i:=0;t;:=1t9,x;(t;) =xoi and T; = T.

Step 2. High-level control problem

Solve PTi(x!(1;),1;) for the interval [z, #; + T;]. This yields
the optimal process (u], x}) on [t;, t; + T}].

Step 3. Low-level control problem

Solve this problem on [¢;, 7], where ¢, € (t;, #; + Tj].

Step 4. Preparation of new iteration
Let i:=i+1, t; = t7, x;(t;) = x;_,(t7). Pick a new T;. Go to
step 2.
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A key observation on the above algorithm concerns the
fact that the maximum principle used to solve the higher
level optimal control problem in step 2 yields an open loop
control that depends on the initial state. Thus, when
computing the solution for the new time subinterval we are
in fact closing the loop. The receding horizon feedback
control law provided by steps 2 and 3 plays a key role in
this algorithm. The notion of receding horizon control has
long been known but, only recently, results concerning the
robustness and stabilizing properties of this scheme for
problems with state-control constraints, general cost
function and nonlinear system’s dynamics have been
proved (Keerthy and Gilbert, 1988; Mayne and Michalska,
1990; Vinter and Michelska, 1991). Conventional receding
horizon techniques, such as those described in Keerthy and
Gilbert (1988), do not handle some important features of
this algorithm:

(1) Problem P (x; (¢;), ;) is solved only at discrete times,
t;, where the size of A = ¢, —t; depends on the dynamics;

(2) Only approximate solutions to PT(x}(t),t) are
needed;

(3) Moderate model discrepancies can be tolerated.

The results in Mayne and Michalska (1990) and in Vinter
and Michalska (1991) apply to equivalent versions of our
problem where state and control constraints are removed
and replaced by adequate penalization terms in the cost
functional. Only mild assumptions are required in order to
well define the integral cost functional and guarantee the
Lipschitz continuity of the value function, which will be
employed as a Lyapunov function for the required stability
analysis of this scheme.

The duration of time horizon 7; depends on the system
behaviour and on the magnitude of random disturbances.
To see this, just note that the specification of the demand at
the output of the system consists essentially of a pull rule
and that the strategy defined by the optimal control
problem represents a compromise between utilization of
the dynamic capacity of the system and the minimization of
product cycle time. Therefore the behaviour of the system
at time 7 depends on the demand at time ¢ plus the maxi-
mum cycle time of the products being produced. This way,
if the period 7; is a multiple of the maximum cycle time,
then the behaviour of the system in the first instant of the
current period is not affected by demand after period 7;.

Although the whole framework represents a significant
computational burden its structure is particularly suited to
take advantage of the computational power offered by dis-
tributed and interconnected computer systems of modern
manufacturing systems. On the other hand, the receding
horizon strategy provides three welcome additional features:

(1) The lower-level problem is solved only for the first
subinterval [f;, /] of the horizon [t;,t; + T}];

(2) When mild disturbances are present, the solution of
the current finite horizon problem PT(x}(#),t) will not
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differ significantly from that of the preceding problem and
uf | is a good initial estimate to solve P%(x;(t),#). Fur-
thermore, it is very likely that, for important classes of
manufacturing systems, the assumptions validating the
‘averaging’ approximation of a stochastic problem by a
deterministic one (Liptser et al., 1996) are met;

(3) Computational burden resulting from the solution
of the optimal control problem is reduced because the 7; is
usually shorter than the original planning horizon N.

5. Towards implementation

An issue that is rarely addressed in the literature describing
conceptual control architectures concerns the design and
implementation issues. Here, we will state the main ideas
behind a methodological framework adapted to the specific
characteristics of the industrial organization in Portugal
that was used to design an integrated decision support
system for the spinning unit of a textile company, (Go-
ngalves et al., 1997). This framework resulted from the
application of systems engineering methods that trans-
forms a linguistic expression of objectives and constraints
into a system solution. This process includes the following
main phases: requirements analysis, functional analysis and
system synthesis.

While the first phase yields a set of high-level require-
ments that will serve as input to the functional analysis, this
phase will produce a set of functional requirements ex-
pressed in the form of a user-oriented specification to be
validated by the system end user. The final phase consists
of mapping the obtained functional architecture onto the
conceptual architecture and provides, as output, the tech-
nical specification for the control architecture implemen-
tation.

This process ensures that the information and decision
flows required by the various decision-making problems in
the architecture are actually available and are meaningful
from the point of view of the manufacturing system. Fur-
thermore, the role of humans in the organization is also
properly accounted for. This and the fact that the end users
have an active role in the analysis and design process have
an important impact in the proper use of the capabilities of
the designed system.

6. Conclusions

In this paper, we present current developments of an hi-
erarchical approach permitting the definition of suboptimal
control strategies for a large class of manufacturing sys-
tems. The use of dynamic optimization techniques coupled
with a receding horizon scheme provides a framework to
tackle planning and scheduling issues encountered in im-
portant classes of manufacturing systems.

Pereira and Sousa

The fact that it requires a realistic model of the system,
the cost functional may be properly customized, and the
use of a specific optimization algorithm makes it especially
attractive when the quest for optimality is the main con-
cern.

Furthermore, this approach is particularly amenable to
integration in a wider context of supply chain management
for which models and techniques of hybrid systems theory
appears to be the most favourable framework.

The integration of this framework, within a current re-
search project, in a manufacturing environment is in its
early stages. Simulation results obtained so far permit us to
consider this approach as a promising avenue and much
more work remains to be done in the following directions:

(1) Robustness and sensitivity of the receding horizon
strategy with respect to larger parameters perturbations;

(2) Full development of an integrated framework sup-
ported by the concepts and tools of hybrid systems theory;

(3) Further requirements so that this approach can be
used as an efficient tool in a decision support system with
particular emphasis in the context of a supply chain man-
agement framework;

(4) Implementation issues on a real-time distributed
computing system.
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