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Abstract

With the advent of faster and cheaper computers� optimization based control method�

ologies have become a viable candidate for control of nonlinear systems� Over the

past twenty years� a group of such control schemes have been successfully used in the

process control industry where the processes are either intrinsically stable or have

very large time constants�

The purpose of this thesis is to provide a theoretical framework for synthesis of

a class of optimization based control schemes� known as receding horizon control

techniques for nonlinear systems such as unmanned aerial vehicles�

It is well known that unconstrained in�nite horizon optimal control may be used

to construct a stabilizing controller for a nonlinear system� In this thesis� we show

that similar stabilization results may be achieved using unconstrained �nite horizon

optimal control� The key idea is to approximate the tail of the in�nite horizon cost�

to�go using� as terminal cost� an appropriate control Lyapunov function �CLF�� A

CLF can be thought of as generalization of the concept of a Lyapunov function to

systems with inputs�

Roughly speaking� the terminal CLF should provide an �incremental� upper bound

on the cost� In this fashion� important stability characteristics may be retained

without the use of terminal constraints such as those employed by a number of other

researchers� The absence of constraints allows a signi�cant speedup in computation�

Furthermore� it is shown that in order to guarantee stability� it su
ces to sat�

isfy an improvement property� thereby relaxing the requirement that truly optimal

trajectories be found�

We provide a complete analysis of the stability and region of attraction�operation

properties of receding horizon control strategies that utilize �nite horizon approxi�

mations in the proposed class� It is shown that the guaranteed region of operation

contains that of the CLF controller and may be made as large as desired by increasing
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the optimization horizon �restricted� of course� to the in�nite horizon domain�� More�

over� it is easily seen that both CLF and in�nite horizon optimal control approaches

are limiting cases of our receding horizon strategy� The key results are illustrated

using a familiar example� the inverted pendulum� as well as models of the Caltech

ducted fan at hover and forward �ight� where signi�cant improvements in guaranteed

region of operation and cost are noted�

We also develop an optimization based scheme for generation of aggressive tra�

jectories for hover and forward �ight models of the Caltech ducted fan experiment�

using a technique known as trajectory morphing� The main idea behind trajectory

morphing is to develop a simpli�ed model of the nonlinear system and solve the tra�

jectory generation problem for that model� The resulting trajectory is then used as

a reference in a receding horizon optimization scheme to generate trajectories of the

original nonlinear system� Several aggressive trajectories are obtained in this fashion

for the forward �ight model of the Caltech ducted fan experiment�
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Chapter � Introduction

��� Background

For quite some time now� optimization has played a crucial role in decision processes

concerning physical or organizational systems� Every time there is a need to make a

selection between a set of possible choices� one would like to pick the decision that

costs the least� satis�es all constraints� and is practical to implement� Scarcity of

resources often dictates the need to make decisions that distribute available resources

in an optimum manner� Therefore� it is not surprising that optimization has become

an integral part of any scienti�c and engineering discipline�

Despite the fact that the mathematical foundation of optimization theory goes way

back to great mathematicians such as Gauss� Lagrange� Euler� the Bernoulis� etc��

it was only � decades ago� with the advent of digital computers� that optimization

became widespread and practical�

It was perhaps with the invention of Simplex method �Dan���� an e
cient algo�

rithm for solving linear programs� that both the theory and practice of optimization

gained momentum� Linear programing was� and still is� the most natural way to

formulate a variety of optimization problems� In addition to the elegance of the

mathematical solution� perhaps the simplicity in the formulation phase has made

linear programing a pure success�

Nevertheless� there are a huge class of optimization problems which can not be

formulated as a linear program� for the simple reason that the constraints and�or the

objective are not linear in variables� This brings us to nonlinear programs �GMW����

Much of the early theory associated with this type of optimization has been focused

on obtaining necessary and su
cient conditions for a solution point� Also� due to the

non�convex nature of the problem� the solutions are at best local extrema� i�e�� there

is no guarantee� in general� that the nonlinear program is solved globally�



�

Although intrinsically more di
cult than its linear counterpart� the past couple

of decades has witnessed a tremendous amount of research in development of e
cient

algorithms for solving nonlinear programs� Several interior point methods have been

developed for solution of quadratic programing problems which are a special class of

nonlinear programs �Wri���� General nonlinear programing problems can be solved

by �nding the solution to a sequence of quadratic programs using a method known

as sequential quadratic programing �GMSW����

Both linear and nonlinear programing� however� are static optimization problems�

An interesting and useful class of optimization problems is dynamic optimization� In

dynamic optimization� a functional is maximized�minimized subject to a set of di	er�

ential and algebraic constraints� Such problems arise in planning� control� estimation�

game theory� etc� This class of problems are essentially more di
cult to solve� since

the solutions are elements of in�nite dimensional rather than �nite dimensional vec�

tor spaces� as in the case of nonlinear programs� This simple di	erence introduces a

whole new set of challenges to the problem� Namely� to solve the problem� one has

to somehow convert the problem into a nonlinear programing problem� and then use

o	�the�shelf nonlinear programing solvers to solve the problem� In this thesis� our

focus is on this type of optimization problems� Speci�cally� we focus our attention on

the optimal control problem�

Although optimal control theory has its roots in calculus of variations and John

Bernoulli
s brachistochrone �Greek for �shortest time�� problem� it was formally de�

veloped about �� years ago in the seminal works of L�S� Pontryagin �Ponan� in the

former Soviet Union and Richard Bellman �Bel��� in the United States� While Pon�

tryagin introduced the minimum principle� which basically gave necessary conditions

for the existence of optimal trajectories� Bellman introduced the concept of dynamic

programing� The development of dynamic programing led to the notion of the cele�

brated Hamilton�Jacobi Bellman �HJB� partial di	erential equation� which had the

value function as its solution� The value function provided the cost�to�go for any

initial condition� resulting in an optimal feedback policy�

The idea behind dynamic programing was extremely simple and elegant� It was
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mainly based on principle of optimality which merely suggested that if a trajectory

is optimal� any end portion of it had to be optimal too� This resulted in a revolution

in optimal control� and with pioneering work of Kalman �Kal��� KB��� Kal��� in

����
s� led to the theory of linear optimal control�

The decade ��������� witnessed intensive research activities on the Linear Quadra�

tic Gaussian �LQG� problem �Ath���� also known as the H� optimal control problem�

The HJB partial di	erential equation� prohibitive to solve in general� had now become

two separate Riccati equations� which could be solved very e
ciently�

At that point in time it was pretty much believed that the linear optimal control

problem was solved� However� a simple counter example in �Doy��� proved otherwise�

This simple counter example showed that LQG regulators can have arbitrarily small

robustness margins� This result was quite contrary to the common belief at the time

and ignited a new line of research that mixed control theory and pure mathematics

for the most of ��
s and led to the solution of the well�known H� optimal control

problem �DGKF����

The story of the nonlinear optimal control� however� was unfortunately not as

fruitful� for the very good reason that the problems were inherently more di
cult in

the nonlinear domain� The HJB equation was solved only in some low dimensional

cases� and that was by brute force numerical methods that exploited gridding and

meshing techniques�

Furthermore� the problem of �nding an optimal state and control trajectory from

a given initial condition was solved by solving a two point boundary value problem�

This� however� was just a way to come up with the optimal control action� as a

function of time and not as a function of state� Therefore� for obvious reasons� it was

vulnerable to uncertainty� and not useful for control purposes� Besides� even in the

linear case that the problem was much more mature� dealing with control and state

constraints was not properly addressed in this context�

Several excellent textbooks emerged on the optimal control theory in ����
s and

����
s �AF��� LM��� BH���� Among these books� however� �LM��� had an inter�

esting paragraph that described a hypothetical method for obtaining a closed�loop
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controller from open�loop trajectories �MRRS���� �One technique for obtaining a

feedback controller synthesis from knowledge of open�loop controllers is to measure

the current control process state and then compute very rapidly for the open�loop

control function� The �rst portion of this function is then used during a short time

interval� after which a new measurement of the process state is made and a new open�

loop control function is computed for this new measurement� The procedure is then

repeated��

This very important remark was simply forgotten� probably due to the high com�

putational cost of the algorithm� More than ten years later� this idea led to the

Model Predictive Control �MPC�� also known as Receding Horizon Control �RHC�

technology�

Perhaps the earliest application of this idea was in Richalet� Rault� Testud and

Papon �RRTP���� These authors developed a technique known as IDCOM �IDen�

ti�cation and COMmand�� Their method employed a �nite horizon pulse response

linear model� a quadratic cost function� and input and output constraints� It was�

however� developed totally independent from the earlier results of optimal control�

such as the one in �LM���� and was designed to address the needs and concerns of

the industry� which required methods that can handle constraints and uncertainty�

Several other methods were later developed along the same lines� Some of these were

Dynamic Matrix Control �DMC� �CR��� PG���� and later Quadratic Dynamic Ma�

trix control �QDMC� �GM���� In QDMC� quadratic programing was employed to

solve the constrained open�loop optimal control problem that results from having a

linear system with linear constraints and quadratic cost in the optimization�

These methods were mainly used in the petro�chemical and process control indus�

tries� In these industries� the operating points were obtained by solving linear pro�

grams� and due to economic considerations� they were required to be on the boundary

of feasibility� This made the use of optimization quite attractive�

Despite the fact that the industrial proponents of this approach did not address

stability issues directly� they were well aware of its importance� In fact� an earlier

observation by Kalman �Kal��� had suggested that even in the absence of constraints�
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optimality did not necessarily imply stability� and that only under some conditions

�stabilizability and detectability�� and in�nite length of the optimization horizon�

optimal controllers were stabilizing� Later� standard Lyapunov stability techniques

were used to establish stability and it turned out that the value function associated

with the in�nite horizon optimal control problem is a suitable Lyapunov function�

Since solving an in�nite horizon optimal control problem in real time was a pro�

hibitive task� except possibly for standard H� and H� problems� researchers came up

with alternative schemes to use �nite horizon approximations� According to Mayne

et al� �MRRS���� early examples of results in this direction were Kleinman �Kle����

and Thomas �Tho���� Kleinman considered the minimum energy control of a linear

system over a �nite horizon and picked the inverse of the controllability Grammian

over the �nite horizon as the Lyapunov matrix�

Further results by Kwon and Pearson �KP��� and Kwon� Brukstein� and Kailath

�KBK��� solved a more general linear quadratic problem with a �nite horizon� These

results were important� but of limited application� because they were only appropriate

for unconstrained linear systems�

Since then� MPC has become a standard technique for control of multivariable�

constrained chemical processes� Over ���� applications of this technology has made

it a multimillion dollar industry �MRRS��� ML��� GPM���� However� until recently�

the attention of MPC proponents has been mainly restricted to open�loop stable

processes or systems with large �settling times��

At �rst only linear systems were considered and the e	ect of horizon length and

cost function parameters on stability and performance were analyzed� Since the

employed machinery was linear analysis� hard constraints did not appear in these

results�

Around the same time� however� a closely similar methodology was being devel�

oped in the adaptive control community and that was named Generalized Predictive

Control �GPC� �CMT��a� CMT��b�� The main issue under consideration in GPC

was stability of input�output linear discrete time systems where states were not avail�

able for measurement and noise was present� Stability was achieved by imposing
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constraints on inputs and outputs over a �nite interval�

The turning point in stability analysis of the MPC scheme is probably the paper

by Chen and Shaw �CS���� These authors show that the stability of the receding

horizon scheme can be guaranteed by utilizing a terminal constraint and using the

value function as a Lyapunov function candidate� Later� Keerthi and Gilbert �KG���

imposed a terminal state equality constraint x�t�T � � � and used the value function

as the Lyapunov function to ensure the stability of constrained discrete�time nonlinear

systems� Since then� the value function has been almost universally used as the

Lyapunov function to ensure stability of the receding horizon scheme�

The ��
s has witnessed a number of proposals in ensuring the stability of the

MPC scheme� Some of these approaches follow and extend the last two references�

and employ terminal equality constraints to guarantee stability� The work of Keerthi

and Gilbert �KG��� resulted in a �nite�horizon optimization problem which turned

out to be computationally demanding and almost impossible to satisfy in some cases�

This result was later relaxed by Michalska and Mayne �MM��� which ensured

closed�loop stability by requiring that the state at the end of the horizon to enter a

suitable neighborhood of the origin rather than being at the origin� Once the state

entered that neighborhood� the control was switched to a local linear controller which

stabilized the system from that point� This approach was known as the dual mode

control� A similar approach was also used in Sznaier and Damborg �SD��� in a

di	erent context�

Another important scheme which was developed by Bitmead et al� �BGW���

utilized a terminal cost to ensure closed�loop stability of unconstrained linear systems�

There was no need to impose terminal constraints in this approach and the controller

was computed o	�line� In addition to these results� a very important result due to

Rawlings and Muske �RM��� was developed in the context of linear stable systems

with input constraints� They proposed the terminal cost to be the in�nite horizon

value function associated with zero control�

A di	erent approach combined both of the aforementioned methods� namely�

using a terminal constraint as well as a terminal cost� These were proposed by
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Parisini and Zoppoli �PZ��� and later by Chen and Allg�ower �CA��� in the context

of nonlinear systems� The idea was to use a quadratic endpoint penalty of the form

ax�t � T �TPx�t � T � for some a � � and some positive de�nite matrix P � as well as

a terminal inequality constraint�

In a more recent paper by Magni and Sepulchre �MS��� and later by De Nicolao et

al� �NMS���� stability of the receding horizon scheme was proven �for continuous�time

and discrete�time systems� respectively� by using a �possibly non�quadratic� end point

penalty which is the cost incurred if a locally stabilizing linear control law is applied

at the end of the time horizon T � The linear control law ensures local exponential

stability of the equilibrium at x � �� and it is assumed that the region of attraction

of the linear controller is large enough that can be reached from the initial condition

within the time interval ��� T �� Moreover� it is assumed that the optimization is

performed over admissible control sequences� i�e�� control sequences which guarantee

that at the end of the horizon the state has reached a suitable neighborhood of the

origin which is an exponential stability region for the linear controller� In other words�

a state inequality constraint is implicitly imposed�

An approach for the receding horizon control of globally stabilizable nonlinear

systems was developed by Primbs et al� �PND��� Pri���� In this approach� �rst a

globally stabilizing control law is achieved by �nding a global control Lyapunov func�

tion �CLF� �Son���� As it will be explained later in the thesis� a CLF is generalization

of the Lyapunov function to systems with input� Once the global CLF is obtained�

closed�loop stability is enforced by including additional state constraints that require

the derivative of the CLF along the receding horizon trajectory to be negative and

also that the decrease in the value of the CLF be greater than that obtained using

the controller derived from the CLF� This approach is attractive in the sense that

global stability is retained without� e�g�� enforcing an equality endpoint constraint�

�Unfortunately� it does require a global CLF�� This approach divides the problem into

two phases� The �rst phase is to obtain a CLF and the second is to use the CLF in

a receding horizon scheme�

Since the couple of lines of introduction in �LM���� MPC has come a long way�
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However� there are several issues which have not been addressed properly�

On the theory side� despite the variety of approaches in stability analysis of the

closed�loop system� there are a few problems still unsolved� Most importantly� the

issue of stability is not completely resolved yet� Other issues such as regions of

attractions of MPC or RHC have not been fully addressed either�

On the practical side� although various success stories have been reported from the

process control industry� such as plants with as many as �� states and multiple inputs

and outputs� it has been mainly con�ned to slow or stable processes� Speci�cally no

successful application of the MPC or RHC scheme or any of its variants which can be

coined under the term optimization based control� has been reported in �ight control�

Part of the problem stems from the fact that control theory has been very developed

in terms of regulation whereas the area of trajectory generation and tracking is not

developed as much� and performing very exotic maneuvers can not be addressed

properly in a regulation setting�

As it will be seen in the next section� the purpose of this thesis is to develop a

mathematical framework for the MPC�RHC scheme that can be employed for the

control of highly maneuverable aerial vehicles�

��� Contents of this thesis

In the previous section� we presented a brief overview of the status of model predictive

control�receding horizon control methods� also known as optimization based control

approaches� In the next few chapters� we develop a stabilizing scheme for receding

horizon control of nonlinear systems� The proposed scheme utilizes a special class

of control Lyapunov functions �CLFs�� which can be obtained o	�line� and used as a

terminal cost in the receding horizon scheme to guarantee stability�

Speci�cally� we show that contrary to some earlier results described in the previous

section� there is no need to impose terminal equality and �or inequality constraints

or any other CLF based constraint to guarantee stability of the receding horizon

scheme� This� as will be seen later throughout the thesis� will speed up the calculations
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drastically�

This research has been performed at Caltech as part of the Software Enabled

Control �SEC� at DARPA� The idea behind SEC program is to explore challenges

that one faces when trying to use optimization�based control strategies for control of

Unmanned Aerial Vehicles �UAVs�� Until recently� use of RHC in control of UAVs

seemed impossible� due to heavy cost of online computations required for stability

and high performance of the vehicle� Thanks to faster and cheaper hardware� and

more e
cient software� there seems to be at last some light at the end of the tunnel�

Proper use of RHC technology� in addition to proper software� undoubtedly makes

this once thought farfetched goal as close as ever to reality�

The main contribution of this thesis is the development of an RHC strategy which

is suitable for control of high performance Unmanned Aerial Vehicles �UAVs�� In

Chapter �� we show that stabilization results may be achieved using an unconstrained

�nite horizon optimal control problem� The key idea is to approximate the tail of the

in�nite horizon cost�to�go using� as terminal cost� an appropriate control Lyapunov

function� Roughly speaking� the terminal CLF should provide an �incremental� upper

bound on the cost� In this fashion� important stability characteristics may be retained

without the use of terminal constraints such as those employed by a number of other

researchers mentioned in ���� The absence of constraints allows a signi�cant speedup

in computation�

We provide a complete analysis of the stability and region of attraction�operation

properties of receding horizon control strategies that utilize �nite horizon approxi�

mations in the proposed class� It is shown that the guaranteed region of operation

contains that of the CLF controller and may be made as large as desired by increasing

the optimization horizon �restricted� of course� to the in�nite horizon domain�� More�

over� it is easily seen that both CLF and in�nite horizon optimal control approaches

are limiting cases of our receding horizon strategy� The key results are illustrated

using a familiar example� the inverted pendulum� where signi�cant improvements in

guaranteed region of operation and cost are noted�

A requirement implied in these results was being able to solve the optimizations
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globally� This assumption is removed in Chapter � and it is shown that the optimality

can be replaced by an improvement property� Speci�cally� it is shown that in order

to guarantee stability� it su
ces to satisfy an improvement property� thereby relaxing

the requirement that truly optimal trajectories be found� A numerical example using

the same inverted pendulum is presented to illustrate this point�

Furthermore� several approaches for obtaining CLF suitable for receding horizon

purposes will be discussed in Chapter �� The methods used range from Jacobian

linearization of the nonlinear plant and designing an LQR controller� to using convex

optimization techniques to come up with quadratic CLFs and �nally Linear Param�

eter Varying �LPV� methods for quadratic and state dependent control Lyapunov

functions�

The practical portion of the thesis deals with the application of receding hori�

zon�CLF methods developed earlier in this thesis to models of a �ight control ex�

periment developed at Caltech� The experiment is a tethered �ying wing with a fan

and a duct� hence� it is called �ducted fan�� The dynamics of the system are rep�

resentative of a Vertical Landing and Take o	 �VTOL� aircraft� such as a Harrier

around hover or a thrust vectored aircraft such as F���HARV or X��� in forward

�ight� Therefore� it serves as a perfect testbed for the purpose of this thesis� This

section starts from Chapter �� In this chapter� the Caltech ducted fan experiment is

completely described and two models of the experiment� one in hover mode and one

in forward �ight� are developed and discussed� Several simulations are performed and

comparisons are made between di	erent results�

All the chapters so far deal with the problem of regulation� We brie�y touch on

the subject of trajectory generation in Chapter �� Since trajectory generation is an

inherently di
cult problem� a simpli�ed model of the ducted fan is developed for

trajectory generation purposes� The generated trajectories are used as reference in

a receding horizon scheme and trajectories for the full model are generated in this

fashion� Finally� conclusions are presented in Chapter ��
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Chapter � Receding horizon control

��� Problem setting

The nonlinear system under consideration is

 x � f�x� u�

where the vector �eld f � Rn � R
m � R

n is C� and possesses a linearly controllable

critical point at the origin� e�g�� f��� �� � � and �A�B� �� �D�f��� ��� D�f��� ��� is

controllable� We require the set f�x�Rm� � R
n to be convex for each x � Rn � Given

an initial state x and a control trajectory u���� the state trajectory xu��� x� is the

�absolutely continuous� curve in R
n satisfying

xu�t� x� � x �

Z t

�

f�xu�� � x�� u���� d�

for t � �� We require that the trajectories of the system satisfy an a priori bound

kx�t�k � ��x� T� ku���k�� 		� t � ��� T ��

where � is continuous in all variables and monotone increasing in T and ku���k� �

ku���kL����T �� Most models of physical systems will satisfy a bound of this type�

The performance of the system will be measured by a given incremental cost

q � Rn � R
m � R that is C� and fully penalizes both state and control according to

q�x� u� � cq�kxk� � kuk��� x � Rn � u � Rm

for some cq � � and q��� �� � �� We further require that the function u 
� q�x� u� be

convex for each x � Rn � These conditions imply that the quadratic approximation of
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q at the origin is positive de�nite� D�q��� �� � cqI � ��

We will also suppose that f and q are su
ciently compatible to uniquely de�ne

a C� Hamiltonian for the �optimized� system �LM���� In particular� we will require

that there is a C� function !u� � Rn � R
n � R

m � �x� p� 
� !u��x� p� providing a

global minimum of the pre�Hamiltonian K�x� p� u� �� pTf�x� u� � q�x� u� so that the

Hamiltonian H�x� p� �� K�x� p� !u��x� p�� is C�� Such a !u���� �� is locally guaranteed

by the implicit function theorem �though we would require f� q � C��� Note that

this condition is trivially satis�ed for control a
ne f and quadratic q �for then u 
�
K�x� p� u� is strictly convex and real analytic��

The cost of applying a control u��� from an initial state x over the in�nite time

interval ���	� is given by

J��x� u���� �

Z �

�

q�xu�� � x�� u���� d� �

The optimal cost �from x� is given by

J���x� � inf
u���

J��x� u����

where the control functions u��� belong to some reasonable class of admissible controls

�e�g�� piecewise continuous�� The function x 
� J���x� is often called the optimal value

function for the in�nite horizon optimal control problem� For the class of f and q

considered� we know that J�� is a positive de�nite C� function on a neighborhood

of the origin� This follows from the geometry of the corresponding Hamiltonian

system �vdS��� vdS���� In particular� since �x� p� � ��� �� is a hyperbolic critical

point of the Hamiltonian vector �eld XH�x� p� �� �D�H�x� p���D�H�x� p��T � the

local properties of J�� are determined by the linear�quadratic approximation to the

problem and� moreover� D�J����� � P � � where P is the stabilizing solution of the

appropriate algebraic Riccati equation�

For practical purposes� we are interested in approximating the in�nite horizon

optimization problem with one over a �nite horizon� In particular� we would like to
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somehow take the discarded tail of the cost into account� To do this� let V be a

nonnegative C� function and de�ne the �nite horizon cost �from x using u���� to be

JT �x� u���� �

Z T

�

q�xu�� � x�� u���� d� � V �xu�T � x��

and denote the optimal cost �from x� as

J�T �x� � inf
u���

JT �x� u���� �

As in the in�nite horizon case� one can show� by geometric means� that J�T is locally

smooth �C��� Other properties� e�g�� local positive de�niteness� will depend on the

choice of V and T � As we will see in the sequel� certain choices of V will allow us to

keep the desirable features of the in�nite horizon problem�

Let �� denote the domain of J�� �the subset of Rn on which J�� is �nite�� It is

not too di
cult to show that the cost functions J�� and J�T � T � � are continuous

functions on �� using the same arguments as in proposition ��� of �BCD���� We

make the following assumption�

Standing Assumption 	SA
� The minimum value of cost functions J��� J
�
T � T � ��

is attained�

The assumption �SA� guarantees the existence of an optimal trajectory

�x�T �t� x�� u�T �t� x��� t � ��� T ��

such that

JT �x� u�T ��� x�� � J�T �x� �

Continuity of u�T ��� x� follows directly from Pontryagin
s Maximum Principle� This

trajectory is not necessarily unique� In fact� in examples one �nds two trajectories of

equal �minimal� cost originating at points where J�T is only continuous �and not dif�

ferentiable�� Under assumptions of the sort given �convexity� boundedness� etc��� one

can turn �SA� into a proposition� This involves the use of techniques from regularity
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theory and the direct methods of the calculus of variations� see �Ces��� and �BMH����

It is easy to see that J�� is proper on its domain so that the sub�level sets

��r �� fx � �� � J���x� � r�g

are compact and path connected and moreover �� �
S

r�� ��r � Note also that ��

may be a proper subset of Rn since there may be states that can not be driven to the

origin� We use r� �rather than r� here to re�ect the fact that our incremental cost is

quadratically bounded from below� We refer to sub�level sets of J�T and V using

�T
r �� path connected component of fx � �� � J�T �x� � r�g containing ��

and

�r �� path connected component of fx � Rn � V �x� � r�g containing ��

��� In�nite and �nite horizon optimization

In this section� we explore some of the relationships between an in�nite horizon opti�

mal control problem and its �nite horizon approximations� We will show that the use

of an appropriate terminal cost allows us to retain desirable features of the in�nite

horizon problem�

����� In�nite horizon properties

What in�nite horizon problem properties are interesting for �nite horizon approxima�

tions and� in particular� are useful for receding horizon strategies" This is a question

that we intend to answer in this section�

Let �x��� u
�
����� x� be any optimal trajectory originating at x� Then� for any � � ��

we have

J���x����� x�� � J���x��
Z �

�

q�x���� � x�� u���� � x�� d� � �����
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Since� by �SA�� � 
� u���� � x� is continuous for � � �� we see that

lim
���

J���x����� x��� J���x�

�
� �q�x� u����� x�� � �cqkxk�

so that J�� possesses a well de�ned �negative de�nite� directional derivative in each

optimal direction f�x� u����� x��� In fact� we may write

 J���x� u����� x�� � q�x� u����� x�� � � �����

where  J���x� u� is the directional derivative of J�� in the direction f�x� u� �when it

exists�� �At points of di	erentiability�  J���x� u� � DJ���x� � f�x� u���

We conclude that each sub�level set ��r � r � �� is positively invariant under

optimal actions� both incremental �� � �� and in�nitesimal� Also� in all cases� these

sets are attracted to the origin exponentially fast� In particular� the �not necessarily

unique� feedback u � k��x� �� u����� x� exponentially stabilizes the origin�

����� Finite horizon properties

As noted above� one may use optimal �in�nite horizon� actions to provide a stabilizing

feedback for a nonlinear system� It is natural to expect that a similar result would

be possible using a �nite horizon optimization� For instance� one could implement a

receding horizon scheme as follows� From the current state x�t�� obtain an optimal

trajectory �x�T � u
�
T ��� � x�t��� � � ��� T �� and use as feedback u�t� � u�T ��� x�t��� �This

feedback is not uniquely de�ned at points where more than one optimal trajectory

is available�� This approach requires one to continuously re�solve the �nite horizon

optimization� An alternative scheme is to solve the �nite horizon optimization every

� � � seconds and use the control trajectory u�T �� � x�t��� � � ��� ��� to drive the

system from x�t� at time t to x�T ��� x�t�� at time t� �� �Practically speaking� a better

idea is to use a local tracking controller to regulate the system about the desired

trajectory �x�T � u
�
T ��� � x�t��� � � ��� ���� We will denote this receding horizon scheme

as RH�T� ��� One might also consider using a variable �k� which will be denoted
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as RH�T� f�kg�� Note that the receding horizon strategy de�ned a �sampled data�

feedback law in contrast with the one shot use of an open loop optimal trajectory� In

de�ning �unconstrained� �nite horizon approximations to the in�nite horizon problem�

the key design parameters are the terminal cost function V and the horizon length T

�and� perhaps also� the increment ��� What choices will result in success"

It is well known �and easily demonstrated with linear examples�� that simple

truncation of the integral �i�e�� V � �� may have disastrous e	ects if T � � is too

small� Indeed� although the resulting value function may be nicely behaved� the

�optimal� receding horizon closed loop system can be unstable#

A more considered approach is to make good use of a suitable terminal cost V �

Evidently� the best choice for the terminal cost is V �x� � J���x� since then the

optimal �nite and in�nite horizon costs are the same� Of course� if the optimal value

function were available there would be no need to solve a trajectory optimization

problem� What properties of the optimal value function should be retained in the

terminal cost" To be e	ective� the terminal cost must account for the discarded tail

by ensuring that the origin can be reached from the terminal state xu�T � x� in an

e
cient manner �as measured by q�� One way to do this is to use an appropriate

control Lyapunov function �CLF��

A control Lyapunov function �CLF� is a C�� proper� positive de�nite function

V � Rn � R� such that�

inf
u

h
 V �x� u�

i
� � �����

If it is possible to make the derivative negative at every point by an appropriate choice

of u� then we have achieved our goal and can stabilize the system with V a Lyapunov

function for the closed loop that we choose� This is exactly the condition given in

������ It can be shown that the existence of a CLF is equivalent to the existence of an

asymptotically stabilizing control law u � k�x� which is smooth everywhere except

possibly at x � � �Art���� Moreover� one can calculate such a control law k when the

system is a
ne in control� i�e�� f�x� u� � $f�x� � g�x�u� explicitly from $f � g and V
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�Son���� To this end� suppose that V is a proper C� function satisfying V ��� � ��

V �x� � cvkxk�� x � Rn �

and that is compatible with the incremental cost in the sense that

min
u

�  V � q��x� u� � � �����

on a neighborhood of x � �� Here  V �x� u� �� DV �x� � f�x� u��

Indeed� the feedback

u � kV �x� �� !u��x�DV �x�T � �����

stabilizes the origin� Note that V can be thought of as a control Lyapunov function

which is also an upper bound on the cost�to�go� The maximum principle ensures

that V � J�� also satis�es ����� according to ������ Continuity and properness of V

guarantee the existence of a continuous nondecreasing function r 
� !cv�r� such that

V �x� � !cv�r�kxk� for all x � �r so that x �� �r� implies that kxk� � r��
!cv�r��� Also�

let rv � � be the largest r such that ����� is satis�ed for all x � �r�

The following result provides a basis for the use of �nite horizon optimization in

a receding horizon control strategy �cf� �JYH��b���

Theorem ����� Suppose that x � Rn and T � � are such that

x�T �T � x� � �rv � �����

Then� for each � � ��� T �� the optimal cost from x�T ��� x� satis�es

J�T �x�T ��� x�� � J�T �x��
Z �

�

q�x�T �� � x�� u�T �� � x�� d� � �����

Note that �x�T � u
�
T ���� x� can be any optimal trajectory for the problem with horizon

T �
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Proof� Let �$x�t�� $u�t��� t � ��� �T �� be the trajectory obtained by concatenating

�x�T � u
�
T ��t� x�� t � ��� T �� and �xk� uk��t�T � x�T �T � x��� t � �T� �T �� Here� �xk� uk��s� x��

is the closed loop trajectory starting from x� at time s � ��

xk�s� x�� � x� �

Z s

�

f�xk�� � x��� k�xk�� � x���� d� �

where u � k�x� is any feedback law such that �  V � q��x� k�x�� � � for x � �rv � e�g��

that de�ned by ������ Consider now the cost of using $u��� for T seconds beginning at

an initial state x�T ��� x�� � � ��� T �� see Figure ���� We have

JT �x�T ��� x�� $u���� �

Z T��

�

q�$x���� $u���� d� � V �$x�T � ���

� J�T �x��
Z �

�

q�x�T �� � x�� u�T �� � x�� d� � V �x�T �T � x��

�

Z T��

T

q�$x���� $u���� d� � V �$x�T � ���

� J�T �x��
Z �

�

q�x�T �� � x�� u�T �� � x�� d�

where we have used the fact that q�$x���� $u���� � �  V �$x���� $u���� for all � � �T� �T ��

The result follows since the optimal cost satis�es J�T �x�T ��� x�� � JT �x�T ��� x�� $u�����
�

The following corollary �JYH��b� NMS��� MS��� easily follows�

Corollary ����� Suppose the CLF is replaced by the in�nite horizon cost�to�go re�

sulting from the application of an a priori obtained stabilizing controller� such as the

one de�ned in ������ Then ���	� still holds�

Proof� The proof easily follows that of Theorem ������ �

At this point� one is tempted to conclude that our approach to approximating the

in�nite horizon problem using a CLF terminal cost has been successful� After all�

����� is an appropriate approximation to ����� for invariance purposes� In fact� Theo�

rem ����� is su
cient to conclude the desired invariance and attractiveness properties
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Figure ���� CLF sub�level set �rv as well as x�T ��� and xk����
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in the case that V is a global CLF for then that pesky �if� condition ����� will be

trivially satis�ed�

The situation when V is but a local CLF is much more delicate� Indeed� we

must determine conditions under which ����� will hold under iteration of the receding

horizon map� i�e�� whether x�T �T � x�T ��� x�� � �rv holds� One way to ensure success is

to solve a constrained optimization that imposes such a condition� see� e�g�� �NMS���

MM���� We will show that such an approach is unnecessary�

We begin with a surprising lemma that helps us control the behavior of the ter�

minal state of optimal trajectories�

Lemma ����� Suppose that x � �r� r � rv� Then x�T �T � x� � �r for every T � ��

Proof� As before� let �xk� uk��t� x�� t � �� be the trajectory �starting at x� obtained

using a feedback control u � k�x� satisfying �  V �q��x� k�x�� � � on �rv � The optimal

cost with horizon T � � satis�es

J�T �x� �
Z T

�

q�xk�� � x�� uk�� � x�� d� � V �xk�T � x��

�
Z T

�

�  V �xk�� � x�� uk�� � x�� d� � V �xk�T � x��

� V �x� � r� �

Thus�

V �x�T �T � x�� � J�T �x��
Z T

�

q�x�T �� � x�� u�T �� � x�� d�

� J�T �x� � V �x� � r� �

�

Note that Lemma ����� does not say that x�T �t� x� � �rv for all t � ��� T � when

x � �rv � This is false in general as simple examples show� Indeed� one might say

that methods that attempt to maintain the invariance of �r� r � rv� are ine
cient�

�Moreover� adding constraints of that sort also drive up the computation cost��

Figure ��� depicts the situation for a linear system with quadratic incremental

cost� The �smaller� elliptical region is an invariant �sub�level� set for the chosen ter�
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Figure ���� Optimal trajectories that enter �rv need not stay in �rv �

minal CLF �and corresponding controller�� The trajectory originating at ������ ����

is optimal for T � �� Note that sub�level sets of the terminal CLF are not invariant

under optimal �incremental� �ow� The shape of the sets that are invariant �sub�level

set of J�T � is indicated by the larger �truncated� ellipse�

The elliptical region represents an invariant set de�ned by a quadratic Lyapunov

function� whereas the larger set is the region of attraction of the in�nite horizon

control law� As it can be seen in this �gure� the trajectories starting in �rv need not

stay there for all t � ��� T ��

One might say that methods that attempt to maintain the invariance of �rv are

ine
cient Since the available methods either require a terminal equality or inequality

constraints which further add to the computational burden�

A key motivation for using on�line optimization is to enlarge the operating region

for a controller� We are now in a position to show that the receding horizon controller

does at least as good a job as the CLF controller� from the point of view of theoretical

operating region predictions�

Proposition ����� For all T � �� x � �T
rv implies that x�T �T � x� � �rv � Moreover�
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�rv � �T
rv for all T � ��

Proof� Let T � � and x � �T
rv and note that

V �x�T �T � x�� � r�v �
Z T

�

q�x�T �� � x�� u�T �� � x�� d� � r�v �

The second statement was proved in the proof of Lemma ������ Figure ��� illustrates

the set inclusions� �

})(|{ 2
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v
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})(|{ 2*
vT

T
r rxJx
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≤=Γ

Figure ���� CLF sub�level set �rv and �T
rv � The optimal trajectories starting on �T

rv

end up inside �rv after T seconds�

Recall� however� that a key motivation for using on�line optimization is to enlarge

the operating region for a controller� Moreover� in many cases� the best that one can

hope for is a local CLF�
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The following result provides a performance guarantee for our receding horizon

control strategies�

Proposition ����� Suppose that T� r � � are such that x�T �T � x� � �rv for all x � �T
r �

Let x� � �T
r and consider a trajectory �xrh�t�� urh�t��� t � �� resulting from the use of

a receding horizon strategy RH�T� f�kg� �with �k � ��
Pl

k�� �k �	 as l�	��

J��x�� urh���� � J�T �x�� �

Proof� Consider� at �rst� the use of RH�T� �� with constant � � �� The receding

horizon strategy de�nes a sequence of points fxkg�k�� according to

xk�� � x�T ��� xk�

starting with x� so that xk � x�k��� Now� by the principle of optimality� the cost of

the arc from xk to xk�� is given by

Z �k����

k�

q�xrh���� urh���� d� � J�T �xk�� J�T���xk��� �

Hence� the total cost of this strategy is

J��x�� u���� � J�T �x��� J�T���x�� � J�T �x��� J�T���x�� � � � �

� J�T �x�� �
�X
k��

�
J�T �xk�� J�T���xk�

�

� J�T �x��

where the �nal inequality follows from the fact �shown in Proposition ������ that

J�T �xk� � J�T���xk� for all � � � and all k � �� Clearly this result does not require

� � � to be constant but merely that
Pl

k�� �k �	 as l�	�

The case of receding horizon control with continuous update follows by a limiting

argument�

�
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The above proposition generalizes the fact that

�  V � q��x�t�� u�t�� � �� t � � �

Z �

�

q�x���� u���� d� � V �x����

when V is positive de�nite �implying x�t� � ��� In both cases� we obtain an upper

bound on the cost for a family of trajectories� We also point out that the cost of

using a receding horizon control strategy approaches the in�nite horizon cost as the

horizon T is increased since J���x�� � J��x�� urh���� � J�T �x�� and J�T �x�� � J���x��

as T �	�

We are now ready to show that application of the receding horizon strategy results

in the exponential convergence of the trajectory to the origin�

Theorem ����� Let T � � and consider the use of a receding horizon schemeRH�T� f�kg�
with each �k � ��� T � and

Pk
j�� �j � 	 as k � 	� Then� for each x� � �T

�r�T �� the

resulting trajectory converges to the origin exponentially fast� where !r�T � is the largest

radius such that for each x� � �T
�r�T �� x

�
T �T � x�� � �rv �

Proof� Given T � �� set ct and m� such that J�T �x� � ctjjxjj� �x � �T
�r�T � and

J���x� � m�jjxjj� �x � �T
�r�T �� Let �xrh�t�� urh�t��� t � �� be the receding horizon

trajectory originating from an arbitrary x� � �T
�r�T � and de�ne

W �t� x�� urh���� ��

Z �

t

q�xrh���� urh����d� �

�The control trajectory urh��� is piecewise continuous since each optimal control tra�

jectory u�T �t� x�� t � �� is continuous as a function of time�� As shown in Propo�

sition ������ W �t� x�� urh���� � J�T �xrh�t��� Also� since RH�T� f�kg� is a suboptimal

strategy� J���xrh�t�� � W �t� x�� urh����� Now� since q�xrh�t�� urh�t�� � � as t � 	�

we have

�

�t
W �t� x�� urh���� � �q�xrh�t�� urh�t��

� �cqjjxrh�t�jj�
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� � cq
ct
J�T �xrh�t��

� � cq
ct
W �t� x�� urh����

so that W �t� x�� urh���� � e�
cq
ct
tW ��� x�� urh����� The result follows since

m�jjxrh�t�jj� � J���xrh�t�� � W �t� x�� urh����
� e�

cq
ct
tW ��� x�� urh���� � e�

cq
ct
tJ�T �x��

� cte
�
cq
ct
tjjx�jj� �

�

Note that the optimal control u�T ��� x� is uniquely de�ned in a neighborhood of

the origin since J�T ��� is locally C� so that the locally de�ned instantaneous receding

horizon control u � kT �x� �� u�T ��� x� �i�e�� � � �� de�nes a feedback providing local

exponential stability of the origin� Indeed� the resulting feedback law is identical to

that obtained by solving the associated Hamilton�Jacobi�Bellman PDE� When there

are states x possessing multiple optimal trajectories �as occurs in the example below��

it is no longer clear that an instantaneous receding horizon control can be successfully

employed� From a practical point of view� the restriction to � � � is quite su
cient

as some computation time is always required�

Theorem ����� says that for every �xed T � �� the receding horizon scheme using a

T �horizon optimization is e	ective� What it does not say� in particular� is that we may

vary T and expect a stable process� i�e�� stability is not guaranteed �by our results�

when the di	erent horizon lengths are allowed at each receding horizon iteration�

Note that the dual mode approach described in �MM��� uses �actually requires� a

variable optimization horizon� In that case� stability is ensured by switching to a

stabilizing �linear� controller when close to the equilibrium� In contrast� we note that

one does not need to use a �xed � when implementing a receding horizon scheme

since ����� implies that x�T ��� x� � �T
rv for all � � ��� T �� The stability results are thus

independent of ��
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As was mentioned in the introduction� a major issue which to the best of our

knowledge has not been addressed rigorously� is the region of attraction of receding

horizon control strategies�

One expects that the region of e	ectiveness should grow as the optimization hori�

zon T is increased� eventually covering all of ��� This can not be done without

increasing r beyond rv as the following result on inclusions shows�

Proposition ����� Let r � � be given and suppose that T � � is such that

x�T �T � x� � �rv

for all x � �T
r � Then

�T
r � �T�

r

for all T� � T so that� in particular� �T
r � ��r �

Proof� Using �an extended version of� $u��� from the proof of Theorem ������ we see

that

JT��x� $u���� �

Z T

�

q�x�T �� � x�� u�T �� � x�� d� �

Z T�

T

q�$x���� $u���� d� � V �$x�T���

�
Z T

�

q�x�T �� � x�� u�T �� � x�� d� � V �x�T �T � x�� � J�T �x��

It follows that J�T��x� � J�T �x� for all x � �T
r �cf� �MS����� �

An important question is whether there exists a suitable horizon length for any desired

radius r� The following result guarantees the existence of a suitable optimization

horizon for a given �desired� radius r�

Proposition ����� For any r � � there is a Tv � Tv�r� such that

x�T �T � x� � �rv

for all x � ��r and all T � Tv�r�� In particular� x�T �T � x� � �rv for all x � �T
r �
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Proof� First� note that J�T �x� is bounded �hence well de�ned� on ��r for all T � �

since

J�T �x� �
Z T

�

q�x���� � x�� u���� � x�� d� � V �x���T � x�� � J���x� � bv�r�

where bv�r� �� maxx�	�r V �x�� Next� we note that� regardless of the horizon length

T � the trajectory x�T ��� x� must enter the set �rv within a bounded interval of time�

Indeed� let x � ��r and T � � be arbitrary and suppose that x�T �t� x� �� �rv on an

interval t � ��� t��� In this case� the optimal cost satis�es

J�T �x� �

Z T

�

q�x�T �� � x�� u�T �� � x�� d��V �x�T �T � x�� �
Z t�

�

cqkx�T �� � x�k� d� � cq
!cv�rv�

r�vt� �

Combining the two inequalities� we see that� for T � � su
ciently large� x�T ��� x� must

enter �rv with the �rst arrival time t��x� T � satisfying

t��x� T � � !t��r� ��
!cv�rv�

cq

r� � bv�r�

r�v
�

In particular� we see that using Tv � !t��r� � �� � � �� guarantees the existence of

times t��x� 	 Tv� x � ��r � such that V �x�Tv�t��x�� x�� � r�v� The result x�Tv�Tv� x� � �rv

follows by Lemma ����� completing the proof� �

The following corollary follows immediately from the above Proposition�

Corollary ����� Let x� � �� be arbitrary� There exist r� T 		 such that


� x� � int �T
r

�� x�T �T � x� � �rv for all x � �T
r

Proof� Use r� � J���x�� � r�v � �� � � �� and T � Tv�r�� �

This also shows that �� is an open set�

We are now prepared to present the following theorem�
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Theorem ����� Let % be a compact subset of ��� There is a T 	 	 such that %

is contained in the exponential region of attraction for the receding horizon strategy

RH�T� �� for every � � ��� T ��

Proof� For each x � %� let U�x� � int �
T �x�
r�x� where T �x� and r�x� are given by

Corollary ������ The collection fU�x�gx�
 is an open cover of %� By compactness�

there is a �nite sub�cover fU�xi�gi�N � Setting Ti � T �xi� and ri � r�xi� we see that

% �
�
i�N

�Ti
ri
�
�
i�N

�Tm
ri
� �Tm

rm

where Tm � maxi Ti� rm � maxi ri and the last two inclusions follow from Proposi�

tion ������

Setting T � Tm �and r � rm� we see that x�T �T � x� � �rv for all x � �T
r � %� The

result follows since ����� ensures that x�T ��� x� � �T
r for all � � ��� T �� �

Theorem ����� tells us that we may make the e	ective operating region of a re�

ceding horizon control strategy as large as we like �relative to the in�nite horizon

operating region�� Of great importance is the fact that this result is obtained using

�nite horizon optimization without imposing any constraints on the terminal cost�

��� Unconstrained receding horizon control with

no terminal cost

One would expect that as the horizon length grows� the e	ect of the terminal cost

should diminish� In fact� it has been shown that when stability is enforced by terminal

stability constraints� the e	ect of these constraints diminishes as the horizon length

is increased �CM��� SR���� Therefore� it would be reasonable to ask whether there

exists a �nite horizon length such that the receding horizon scheme would remain

stabilizing without using a CLF as a terminal cost�

We know that in the in�nite horizon case� the minimum cost quali�es as a Lya�

punov function� Also� we know that as T � 	� J�T � J��� The remaining question
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is whether there is a �large enough� �nite horizon length for which the minimum cost

quali�es as a suitable Lyapunov function� This question was answered fairly recently

in the context of constrained discrete�time linear systems �PN���� We will show that

a similar result holds in the case of unconstrained nonlinear systems� Before proving

this result� we will need the following de�nition and proposition �Roy����

De
nition ����� An extended real�valued function f is called upper semicontinuous

at the point y if f�y� �� �	 and f�y� � limx�y f�x�� We say that f is upper

semicontinuous on a set if it is upper semicontinuous at each point of that set�

Proposition ����� 	Dini
� Let ffng be a sequence of upper semicontinuous� real�

valued functions on a countably compact space X� and suppose that for each x �
X� the sequence ffn�x�g decreases monotonically to zero� Then the convergence is

uniform�

Now we are ready to present the following theorem�

Theorem ����� Consider the receding horizon scheme RH�T� �� with zero terminal

cost� Then there exists a T � such that for T � T �� RH�T� �� is stabilizing with �T��
rT

being the region of attraction� where for any given r � �� rT � � is the largest value

such that �T��
rT

� ��r �

Proof� Using the principle of optimality� we can write the following�

J�T �x�� J�T���x
�
T ��� x�� �

Z �

�

q�x�T �� � x�� u�T �� � x��d� � x � ��r �����

where J�T �x� ��
R T
�
q�x�T �� � x�� u�T �� � x��d� � i�e�� the same as before except for zero

terminal cost�

Adding J�T���x� to both sides of ������ and taking J�T �x� to the other side� we

obtain the following�

J�T���x�� J�T���x
�
T ��� x�� � J�T���x�� J�T �x� �

Z �

�

q�x�T �� � x�� u�T �� � x��d�� �����
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Also� note that contrary to the case with a CLF terminal cost� the shorter the

horizon length� the lower the cost value� To see this� suppose T� 	 T�� then

J�T��x� �

Z T�

�

q�x�T��� � x�� u�T��� � x��d� �

Z T�

T�

q�x�T��� � x�T��T�� x��� u�T�����d�

which is clearly greater than J�T��x�� Therefore� we can write the following inequalities�

J�� �x� �
Z �

�

q�x�T �� � x�� u�T �� � x��d� � 	 � � T� ������

The last inequality follows from the fact that u�T is not �necessarily� optimal over

��� ��� Hence� we can write ����� as the following inequality�

J�T���x�� J�T���x
�
T ��� x�� � J�T���x�� J�T �x� � J�� �x� � � 	 � � T� ������

Also� ������ implies that the �nite horizon sub level sets are indeed larger than the

in�nite horizon ones� i�e��

�T
r � ��r � r � ��

All we need in order to prove stability is to show that there exist a large enough but

�nite T � such that the right�hand side of ������ is positive� To show this� we de�ne

the following function over the compact set ��r �

&T �x� ��
J���x�� J�T �x�

J�� �x�
� x �� �

&T ��� �� lim supx��&T �x� ������

It is clear that for each x �� �� &T �x� is continuous� because the numerator of &T �x�

is continuous and the denominator is continuous and non�zero� Hence it is also upper

semicontinuous everywhere except possibly at the origin� In order to show that &T �x�

is upper semicontinuous at the origin as well� all we need to prove is that &T ��� �� 	�

The rest is clear from de�nition ����� and the de�nition of &T ����

Also� note that for all non�zero values of x � ��r � the sequence f&T �x�g is a
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monotone� decreasing sequence� tending to zero as T � 	� We must show that

&T ��� is bounded and converges to zero when T �	 as well� This is true due to the

fact that around the origin� J�T �x� � xTPTx � rT �x�� J���x� � xTP�x � r��x�� and

J�� �x� � xTP�x � r��x� where PT � P�� and P� are the positive de�nite solutions of

the corresponding di	erential and algebraic Riccati equations respectively �DAC����

and

lim
x��

ri�x�

jjxjj� � � i � fT�	� �g�

Therefore� in a small neighborhood of the origin we have�

&T �x� � xT �P� � PT �x

xTP�x
� 
max�P� � PT �


min�P��
� �

as T �	� This also proves that &T ��� is bounded from above� showing that &T �x�

is upper semicontinuous at the origin� The same argument can be used for &T���x��

by merely replacing T with T � ��

We can now conclude that f&T���x�g is a sequence of upper semicontinuous

functions that converges monotonically and pointwise to zero� therefore by Propo�

sition ������ the convergence is uniform�

Hence� by the de�nition of uniform convergence� there exists a T � such that for

any T � T �� &T�� 	
�
�
� implying that

J���x�� J�T���x� 	
�

�
J�� �x��

Thus�

J�T���x
�
T ��� x��� J�T���x� � ��

�
J�� �x� � x � ��r

�note that J���x� � J�T �x��� This implies that J�T���x� is a Lyapunov function proving

asymptotic �and in fact exponential� stability of the closed�loop system with �T
rT

being

the region of attraction� and r�T being the value of the largest sub level set of J�T���x�

that lies inside ��r � for any given r � �� �See Figure ��� for an illustration of the set

inclusions�� �
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The main consequence of this theorem is that when the horizon length is long enough�

no o	 line calculation is required to ensure closed�loop stability� This opens up the

possibility of using the receding horizon scheme in cases where the dynamics and�or

the cost change in real�time �such as when a fault occurs�� A practical application of

these results will be demonstrated in Chapter ��

��� Unconstrained receding horizon control with

magnitude saturation

As it was mentioned in Chapter �� one of the main attractions of the receding horizon

control scheme is its ability to handle input constraints� Due to physical limits in

actuation authority� any practical control strategy has to be able to cope with these

types of constraints�

In this section we formulate a slightly di	erent optimization scheme for inclusion

of magnitude constraints on controls� i�e�� instead of explicitly imposing the magni�

tude constraints in the optimization� we use a smooth saturating function such as

a hyperbolic tangent function to implicitly impose the saturation constraint� The

optimization problem to be solved can be written as follows�

J�T �x� � inf
v���

Z T

�

q�xu�� � x�� ��v����� �
�

�
jjv � ujj�R d� � V �xu�T � x�� �

subject to �  x � f�x� ��v�� u � ��v�

where ��v� � tanh�v� is a smooth saturating function� Note that the above

optimization problem is e	ectively similar to the one with the magnitude constraint

and with u as an input except for the fact that by eliminating the constraint we have

kept the problem as unconstrained� The extra penalty term is added to force the

control to stay in the linear part of the saturation curve�

In order to be able to utilize the stabilizing receding horizon approach developed
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in this chapter in this case� we have to use a CLF that respects the input constraint�

Since such CLFs are extremely hard to come up with in general� we will use the

same unconstrained CLF� However� we have to reduce rv� the radius of the region

of attraction� such that the input constraints are satis�ed� We would search for the

largest level set of the CLF which satis�es minjjujj���  v � qe��x� u� � �� where qe is

the modi�ed cost functional including the extra term �
�
jjv � ujj�R� Without loss of

generality� we have assumed a unity bound on the magnitude of control action� This

way we have implicitly taken the saturation into account without searching for a

constrained CLF or imposing the constraints on the optimization�

��� Example

For the purpose of illustration� we consider the problem of balancing an inverted

pendulum on a cart� We discard the states associated with the cart to allow two�

dimensional visualization� �Please note that this is a highly unrealistic system as it

allows equilibria where the cart is experiencing continuous acceleration'the system

is for visualization only �� The pendulum is modeled as a thin rod of mass m and

length �l �the center of mass is at distance l from pivot� riding on a cart of mass M

with applied �horizontal� force u� The dynamics of the pendulum are then given by

�with � measured from the vertical up position�

�� �
g
l sin � �mr

 ��
� sin �� �mr
ml cos � u

�
��mr cos� �

where mr � m
�m�M� is the mass ratio and g is the acceleration of gravity� Speci�c

values used are m � � kg� M � � kg� l � �
� m� and g � ��� m
s��

System performance is measured using the quadratic incremental cost q�x� u� �

���x�� � ����x�� � ����u� where as usual the state is �x�� x�� � ���  ��� To obtain an

appropriate control Lyapunov function� we modeled the system locally as a Polytopic

Linear Di	erential Inclusion �PLDI� �BGFB���� This approach is quite satisfactory

for this simple �planar� system over a large range of angles� �The details of obtaining
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such CLFs will be discussed in detail in Chapter ��� Working over a range of plus or

minus �� degrees� we obtained the quadratic CLF V �x� � xTPx with

P �

�
� ������ �����

����� �����

�
� �

Simple numerical calculations �in low dimensions#� show that rv � ����� that is�

minu�  V � q��x� u� is negative on solid P �ellipses �r with a radius r 	 ����� An

optimization technique that can be adapted to the problem of computing rv in higher

dimensions can be found in �LH����
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Figure ���� The sublevel set �T
r for T � ��� and r � rv � ���� together with �rv �

Also depicted are the trajectories x�T ��� x� for x on the boundary of �T
r �

By Theorem ������ we know that� for T � �� �T
rv is an invariant subset of the region
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of attraction for the receding horizon controller RH�T� �� with � � ��� T �� Figure ���

depicts the set �T
rv for T � ���� rv � ���� together with trajectories x�T ��� x� for x on

the boundary� Also shown is the set �rv � The inclusion �rv � �T
rv �Proposition ������

is evident as is the fact that x�T �T� x� � �rv for x � �T
rv �
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Figure ���� Receding horizon RH����� ����� and CLF controller �dashed� trajectories�

Figure ��� provides a comparison of receding horizon trajectories �forRH����� ������

with those obtained using the CLF controller u � k�x� � arg minw�  V �q��x� w�� Note

that �T
rv is not invariant under the CLF �ow� As expected� the receding horizon tra�

jectories do remain inside �T
rv �

We also note that the CLF controller often requires signi�cantly more control

authority� For example� as shown in Figure ���� the CLF controller demands almost

�� times as much authority when stabilizing from x� � ������ ����� �The pair orig�
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inating at x� � ������ ���� has a ratio greater than ���� This is not too surprising

since the CLF controller was designed for angular deviations of perhaps �� degrees

and quali�ed on the set �rv � The chosen x� is well outside of the guaranteed CLF

performance region� In contrast� a small optimization horizon �T � ��� compared

with a convergence time of � ���� allows the receding horizon controller to exploit its

knowledge of the nonlinear system dynamics in this region�

Some relevant quantities for the trajectories in Figure ��� are given in the follow�

ing table �the square root of the cost is shown in parentheses��

x J�T �x� J��x� urh���� J��x� uclf����
������ ���� ����� ����� ������ ������ �������
������ ���� ����� ����� ������ ������ �������
������ ���� ����� ���� ������ ����� ������
������ ���� ����� ����� ������ ����� ������
������ ���� ����� ���� ������ ������ �������
����� ���� ����� ����� ������ ������ �������

������ ����� ����� ����� ������ ����� ������
������ ���� ����� ����� ������ ����� ������
������ ���� ����� ����� ������ ����� ������

Table ���� The cost of receding horizon control for various T values �
p

cost��

These values con�rm the fact �Proposition ������ that J��x� urh���� � J�T �x�� In

this case we see that signi�cant performance improvements are obtained through the

use of a relatively inexpensive receding horizon strategy�

The appropriate �nite horizon optimization problems were solved numerically us�

ing RIOTS �Sch��� as well as some local codes that are under development�

Table ��� illustrates the e	ectiveness of using various horizon lengths T in an

unconstrained receding horizon scheme �with � � ������ The table compares the cost

�and its square root� of using receding horizon control with T � ��� and T � ���

with that resulting from the use of the CLF controller �T � ����� One observes a

great reduction in cost for trajectories obtained using even modest amounts of online
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optimization� We also see that near optimal �in�nite horizon� performance may be

obtained on a larger operating region by using a longer optimization horizon� See�

especially� the results for x��� � ��
�� ���

Further insights into the contrasting nature of these trajectories can be found by

presenting the trajectories in phase coordinates as in Figure ���� The r � ���� level

set contours for V and J�� are also shown in that �gure� One notes how natural the

receding horizon trajectories appear� especially by comparison to the corresponding

CLF trajectories�

One notes that� away from the stable manifold of the uncontrolled system� the

cost of using the CLF controller may be very large� �In fact� the phase portrait of

the CLF controlled closed loop system indicates that the CLF controller uses a great

amount of control energy to quickly force the system onto a slow manifold for transit

to the origin� Moreover� this behavior is observed in the large �at great cost� with

small eddies such as that observed near ��
�� ����

We should point out that there is a curve of points where J�� is not di	erentiable

that roughly parallels the r � ���� contour in a northwest direction from the CLF

eddy� From those points� one �nds two very di	erent trajectories with precisely the

same cost� The presence of such a shock �in the �solution� to the Hamilton�Jacobi

equation� somewhat complicates the story by allowing kinks in the level sets�

Surprisingly� our use of �nite horizon approximations seems to improve the situa�

tion somewhat� In fact� the use of receding horizon control with a CLF terminal cost

allows us to� in e	ect� �nd near optimal trajectories over a larger region by exploit�

ing local CLF stability properties� This will be discussed in more detail in Chapter

�� We also mention that the optimal trajectories for this problem� even those that

originate at points where the value function is not di	erentiable� appear to satisfy

local second order su
ciency conditions for an isolated local minimum� In that case�

reliable computations should be possible provided suitable initial trajectories may be

obtained�

As it can be seen from Figure ������ when no saturation is in e	ect� a large control

action is required to stabilize the system� even in the case of the receding horizon
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controller� Figure ����� illustrates what happens when the magnitude of the control

action jjujj is required to be less than ��� In order for V to remain a valid CLF� rv is

reduced from ���� to ���� However� by choosing a larger horizon length of T � �� we

can compensate for the reduction in the size of the region of attraction� Control and

state trajectories are depicted in Figure �������
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��� Summary

In this chapter� we have developed a family of receding horizon control strategies

that obtain excellent stability and performance properties through the use of a control

Lyapunov function as terminal cost� This approach is quite natural� providing a happy

medium between the use of a CLF controller and an ideal in�nite horizon controller�

Of practical signi�cance� we have shown that this approach does not require the

introduction of terminal constraints for stability �such as the ones required by �Pri�����

As was discussed in Chapter �� results of �Pri��� enforce stability by requiring that

the derivative of CLF decreases su
ciently along the open�loop optimal trajectories�

We have shown that such an approach is not necessary� thereby eliminating a key

source of computational burden

In fact� it appears that these computations may be made fast enough to allow

their use even in challenging areas such as �ight control� An implicit assumption

in this chapter is that �globally� optimal trajectories are calculated precisely� This

restriction will be relaxed in Chapter �� An interesting direction is the extension

of these techniques to the case of the trajectory tracking for nonlinear systems� Of

course� the situation is much more complicated since the problem of �nding useful

trajectories of a nonlinear system is itself a rather di
cult problem� A �rst step in

that direction is the use of trajectory morphing techniques �HM��b� HM��a�� This

will be addressed in Chapter ��
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Chapter � Relaxing the optimality

condition in receding horizon control

In the previous chapter� we have detailed the theoretical properties of ideal reced�

ing horizon strategies wherein a global minimum is computed at each step� Only

in very special cases �e�g�� linear dynamics� strictly convex cost� etc�� can one ex�

pect reliable �approximate� computation of a global minimum� It is the purpose of

this chapter to illustrate one of the many ways in which this requirement may be

relaxed� Several authors have addressed this issue in the context of constrained op�

timization� The purpose of this section� however� is to show that without requiring

constraint optimization in each iteration� stability can be guaranteed with the same

approach of Chapter �� see Chen and Allg�ower �CA���� and Scokaert� Mayne� and

Rawlings �SMR��� for results of this nature�

As was discussed earlier� receding horizon techniques produce a sequence of �state

and control� trajectories with ever decreasing cost� Stabilization or� more precisely�

convergence of the cost may be obtained by ensuring that there is su
cient improve�

ment at each step� Thus we may replace the optimality test at each step by a test

for improvement between steps�

��� Relaxing the requirement for optimality

The following result provides a su
cient condition to ensure convergence of the state

to the origin�

Proposition ����� Fix T� � � � and let xi� ui���� i � �� be such that xi�� � xui��� xi�

and

JT �xi��� ui������ � JT���xi��� ui��� ��� � �����
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Then xi � � as i�	�

Proof� Note that the sequence of costs ci �� JT �xi� ui���� is monotone decreasing and

bounded from below� It follows that the incremental cost

�ci � ci � ci�� �
Z �

�

q�xui�� � xi�� ui���� d�

must go to zero as i � 	� since the cost is lower bounded by zero and at each

iteration there is su�cient amount of decrease� This implies that xi � � since there

is a � � � such that
R �

�
q�xu�� � x�� u���� d� � � �minf�� kxk�g for every u���� �

How may we ensure� at each step� the existence of an improving control ui�����"
Similar to the controller $u��� constructed in the proof of Theorem ������ we can use

a dual mode control� The di	erence here is the fact that the control need not be

optimal over ��� T ��

Proposition ����� Suppose that x� and u���� are such that xu��T � x�� � �rv � Then�

there exists a sequence of controls fui���g�� such that xui��� xi� � xi�� � � as i�	�

Proof� Given xi� ui���� choose ui����� such that xui���T � xi��� � �rv and the im�

provement property ����� is satis�ed� One choice is the control obtained by using the

remainder of ui��� in the interval ��� T �� followed by a CLF feedback control �as in the

proof of Theorem ������ for the interval �T� T � ��� The rest of the proof follows that

of Theorem ������ �

One may �and many have� use constrained optimization to solve� at each step� a

feasibility problem of the sort indicated� In that regard� the above result shows that

the problem will remain feasible if it is initially thus� Also� since feasible controls may

be obtained for free� we may use any means whatsoever �including unconstrained

optimization� in our search for better controls� accepting only those that satisfy both

terminal and improvement conditions� Speci�cally� we can use the results of Theorem

����� to indicate that the sub level sets of the cost function JT �xu� u��� is an estimate

of the regions of attraction of the unconstrained receding horizon scheme� In other
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words� one can infer all the results obtained in Chapter � in this case� by merely

replacing the optimal trajectory u�T with any control trajectory that guarantees ������

Of course� there is always a need for an initial feasible trajectory� As was shown

earlier� inside �rV � one can use the CLF controller for warm starting the optimization�

��� Inverted pendulum revisited

The inverted pendulum example was used to illustrate the theoretical properties of

our proposed receding horizon scheme in Chapter �� We now use the same example

to illustrate a very interesting phenomenon� It was mentioned in Section ��� that

for long horizon lengths� the optimized trajectory behaves in a qualitatively di	erent

manner� See Figure ������

It is the purpose of this example to elaborate more on this issue and provide a

clear�cut picture� For small values of the horizon length T � the set �T
rv looks very

much like the ellipse �rv which is reasonably well lined up with the stable manifold

of the pendulum� As the value of T is increased� the ends of �T
rv begin to open up�

eventually wrapping back around toward the inverted equilibrium� indicating that it

can be e
cient �from a cost standpoint� to allow the pendulum to swing down before

bringing it back up to the vertical position� Figure ��� depicts the nature of this

wrap�around for T � ��� and r � rv � ����� The set �T
rv is shown without an overlap

by plotting half of the set boundary which� together with trajectories starting on the

boundary� provide an unwrapped view of the set�

Figure ��� provides a close up view of the overlapping set �T
rv together with the set

�rv � At each point in the overlap region� there are �at least� two local minima� Strict

use of the global optimum in a receding horizon strategy would indicate a preference

for letting the pendulum fall in many situations where the pendulum can be brought

back to the vertical quickly and for a reasonable� though suboptimal� cost�

Consider� for example� the use of a receding horizon strategy with � � ��� �and

T � ���� starting at the initial condition x��� � x� � �������� ������ with optimal

cost J�T �x�� � r�v � �������� The situation is depicted in Figure ���� After � � ���
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Figure ���� The sub�level set �T
r for T � ��� and r � rv � ����� Half of the boundary

�together with trajectories� is shown in an unwrapped fashion to aid in understanding
the overlapping nature of the set�
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Figure ���� A closeup of the sub�level set �T
r for T � ��� and r � rv � ���� together

with �rv � Also depicted are several locally optimal trajectories beginning on the
boundary�
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Figure ���� Receding horizon trajectories using � � ��� beginning at x��� �
�������� ������� At x��� � �������� ������� local minima with costs of ������ �square�
and ������ �circle� are found providing two di	erent strategies�
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seconds� we arrive at x��� � �������� ������ and �nd two local minima with values

������ and ������� o	ering two potential strategies� As both costs are less than r�v� it

is clear that either course will result in convergence to the inverted equilibrium� The

resulting trajectories are shown in �gure ���� The evolution of the costs is shown in

�gure ��� verifying its decreasing nature as well as the possibility of discrete jumps�

indicating strict inequality in ������
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Figure ���� Evolution of the cost for the two strategies shown in �gure ����

This phenomenon is surprising� since in this special case� the optimal solution is

not the desired one�
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��� Summary

The purpose of this Chapter was to extend the results of Chapter � to the case were

the optimizations are not solved exactly� Instead of requiring the receding horizon

trajectories to be optimal in each iteration� a certain decrease in the value of the

cost was required� Furthermore� it was shown that there always exists a controller

which provides the proper decrease� The control trajectory consisted of two parts�

the �rst part was the tail of the trajectory obtained from the previous iteration

and the second was a feedback obtained from the CLF� A numerical example using

the inverted pendulum compared the use of locally optimal and globally optimal

trajectories� Simulations indicated that there are regions in which more than one

locally optimal trajectory exist and both of them are stabilizing�
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Chapter � Generating a suitable CLF

In this chapter� we address the problem of obtaining a CLF suitable for the receding

horizon strategy outlined in Chapters � and �� As was shown earlier� the required

CLF has to be an upper bound on the cost�to�go� in the sense of ������ In the sequel�

we discuss a variety of methods used to obtain such CLFs� Each method will be

discussed with its advantages and disadvantages�

Despite their di	erences� these methods have one thing in common� They are

all derived using linear methods� Other nonlinear methods such as di	erential �at�

ness �FLMR��� and back�stepping �KKK��� can also be used to obtain suitable CLFs�

Note that in the case of CLFs that are not an upper bound on the cost�to�go� i�e�� the

ones that do not satisfy ������ one can always use scaling by a large enough constant

so that ����� is satis�ed �JYH��b��

��� Jacobian linearization

Perhaps the simplest method for deriving a CLF for a nonlinear system is to use

the Jacobian linearization of the system around the desired equilibrium point and

generate a CLF by solving an LQR problem�

It is a well known result that the problem of minimizing the quadratic performance

index�

J �

Z �

�

�xT �t�Qx�t� � uTRu�t��dt

subject to�  x � Ax � Bu u � �Kx

results in �nding the positive de�nite solution of the following Riccati equation

�DAC����

ATP � PA� PBR��BTP � Q � � �����
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The optimal control action is given by

u � �R��BTPx�

In the case of the nonlinear system  x � f�x� u�� A and B are assumed to be

A �
�f�x� u�

�x
j����� B �

�f�x� u�

�x
j�����

where the pairs �A�B� and �Q���� A� are assumed to be stabilizable and detectable

respectively � Obviously the obtained CLF V �x� � xTPx will be valid only in a

region around the equilibrium ��� ��� Therefore� if used as a terminal cost in the

receding horizon scheme developed in Chapter �� the terminal set �rv will be small in

general� requiring longer horizon lengths to maintain stability without enforcement of

terminal constraints� We will discuss this in more detail in the context of an example

in Chapter ��

��� Global linearization

The idea of global linearization has its roots in early works on the problem of absolute

stability in the Soviet Union �LP���� The basic idea behind this approach is to model a

nonlinear system as a Polytopic Linear Di	erential Inclusion �PLDI� �BGFB���� The

dynamics of the nonlinear system are approximated to lie in the convex hull of a set of

linear plants� The problem of quadratic stability of the obtained PLDI� i�e�� stability

provable by a quadratic Lyapunov function� is then recast as a convex optimization

problem which can be solved very e
ciently using interior point methods �NN����

The PLDI describing the nonlinear model can be written as

 x �
mX
i��

�i�t��Aix � Biu�

u � �Kx

�i�t� � �
mX
i��

�i�t� � ��
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Using a quadratic cost function such as � ����� the problem of minimizing an upper

bound on the cost J can be written as the following convex optimization problem�

Minimize

tr�Z�

Subject to�

Y � ��
����
Y AT

i � AiY � BiX �XTBT
i Y Q��� XTR���

Q���Y �I �

R���X � �I

�
���� 	 �

�
� Z I

I Y

�
� � �

i � �� � � � � m

where Z is a slack variable� Y � P��� and X � KY are the change of variables made

to recast the matrix inequalities as LMIs �BGFB���� Q and R are performance index

matrices� with Q � � and R � �� The initial conditions are assumed to be random

vectors with zero mean and an identity covariance�

This is a very powerful method for obtaining suitable CLFs for nonlinear systems�

However� it can be quite conservative� since there are many trajectories that are a

trajectory of the PLDI� but are not a trajectory of the nonlinear system� Furthermore�

the above LMI conditions verify quadratic stability� which is stability provable by a

quadratic Lyapunov function� Another advantage of this method is that robustness

can be addressed in this context� Both parametric uncertainties and unmodeled

dynamics can be addressed in this framework �BGFB���� A successful application of

this strategy was illustrated in Section ����
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��� Frozen Riccati Equation 	FRE
 method

This method was �rst introduced by Cloutier et al� in �CDM���� The basic idea

behind this method� sometimes called State Dependent Riccati Equations� is to solve

a Riccati equation pointwise� along the trajectory of the nonlinear system� A state

dependent formulation of the nonlinear system is obtained� and nonlinearity of the

representation at each point in state space is totally ignored� Although results are

often promising� there are no rigorous justi�cations for even maintaining mere sta�

bility� Nevertheless� the simplicity of the implementation makes the FRE approach

a plausible alternative in some applications� To apply this method� the nonlinear

system is written in the following state dependent form�

 x � A�x�x � g�x�u �����

At each frozen state the Riccati equation is solved� and then the resulting state

feedback controller is applied to the system� i�e�� the state feedback nonlinear control

law is obtained by solving the following�

� � A�x�TP �x� � P �x�A�x�� P �x�g�x�gT �x�P �x� � Q

u � �gT �x�P �x�x �����

The quantity V �x� � xTP �x�x generated by this technique is in general only a local

CLF�

One of the major drawbacks of this method is the lack of a systematic procedure

for selecting� among the in�nite possibilities� a single parameterization for f�x� �in the

form of equation ������ which achieves stability and acceptable performance �HJ����

The CLF obtained using this approach has been used successfully in a receding horizon

scheme �SCH�����
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��� Linear Parameter Varying 	LPV
 methods

This method was originally developed to design controllers for linear systems with

varying parameters� hence the term LPV was coined �SA��� SA��� SA���� It was

assumed that the varying parameter ��t� is available for measurement in real time�

and also that it lied in a compact region with a bound on its variations known a

priori� Although these conditions limit the application of this strategy� it has been

successfully used in the aerospace industry� A variant of this approach� known as the

quasi LPV scheme� was used to design controllers for nonlinear systems� The main

ideas are identical� except for the fact that the varying parameters are a subset of the

states� on which the nonlinearities in the state dependent representation depend� The

so�called quasi�LPV representation of a nonlinear input�a
ne system can be written

as follows�

 x � A���x��x � B���x��u �����

Assume the underlying parameter � varies in the allowable set

F�
P �� f� � C��R� �Rm� � � � P� �i��� �  �i � �i���� i � �� � � � � mg �����

where P � R
m is a compact set� If there exists a positive de�nite X��� such that the

following inequality is satis�ed

�
���
�

mX
i��

�i����X
��i

� A���X��� � X���AT ����B���R��BT ��� X���CT ���

C���X��� �I

�
��� 	 �

�����

for all � � P where C��� � Q
�

� ���x��� then the closed�loop system is stable with the

state feedback

u�x� � �R��BT ���x��X�����x��x�
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Moreover� an upper bound on the optimal value function V ��x� �which also serves as

a CLF� is given by

V �x� � xTX�����x��x � V ��x��

The notation
Pm

i�� �i��� in ����� means that every combination of �i��� and �i���

should be included in the inequality� For instance� when m � �� ����� � ������

����� � ������ ����� � ����� and ����� � ����� should be checked individually� In

other words� ����� actually represents �m inequalities� Additionally� solving �����

involves gridding the parameter space P and choosing a �nite set of basis for X��� �see

�WYPB��� for details�� As can be easily seen� the number of LMIs grows exponentially

with the number of varying parameters� Furthermore� the gridding technique can be

quite costly� Due to these restrictions this method is usually suitable when there are

only a few varying parameters �states� in the state dependent representation�

From a theoretical point of view� in order to guarantee stability� gridding has to be

�ner than a critical limit �WYPB���� However� �nding this limit requires knowledge

of some information about the nonlinear system which is usually not available� Hence

it is not practical to use� This makes the gridding phase an ad hoc procedure�

Similar to the FRE approach� the non�uniqueness of the state dependent repre�

sentation of the nonlinear system can make the results conservative� However� due

to the fact that bounds on the parameter variations are taken into account� stability

arguments are more powerful than regular gain scheduling or the FRE method� The

non�uniqueness issue of the state dependent representation can be properly addressed

by including an additional degree of freedom in the optimizations �HJ��� Hua����

The quasi�LPV control techniques have been quite successful in a variety of

aerospace applications �BFL����� Since the main application area of this thesis

is intended to be the aerospace industry� we choose the LPV approaches to be our

method of choice for obtaining a CLF�



��

��� Summary

The purpose of this chapter was to discuss several methods of generating a CLF�

suitable for receding horizon purposes� Following the results of �Pri���� it was shown

that while these methods generate their own controllers� it is bene�cial to use the

CLF� rather than the controller� to be used in the receding horizon schemes developed

earlier in this thesis� The methods discussed are only a few of the methods available

in the literature� The discussed methods were all developed from a linear setting�

and are suitable for generating CLFs that are useful in the context of the results of

Chapters � and ��
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Chapter � The Caltech ducted fan

The Caltech ducted fan is an experimental testbed developed to facilitate the study of

Uninhabited Combat Aerial Vehicles �UCAVs�� These highly maneuverable aircrafts

are designed to operate without having a pilot on board� The pilot will be in a ground

or airborne based control room far from the actual vehicle� Using the state of the

art virtual reality technology as well as proper control schemes is believed to make

UCAVs a reality� The main advantage of using such vehicles is that it takes the pilots

out of harm
s way�

As was mentioned in the introduction� one of the tasks at DARPA
s Software

Enabled Control Program� is Online Control and Customization �OCC� for UCAVs�

A viable candidate for OCC has been receding horizon control strategies� In this

chapter� we deal with two models of the ducted fan experiment� one around hover

and one at forward �ight� The RHC method developed in this thesis is successfully

applied to these models �JYH��a��

��� Ducted fan at hover

The Caltech Ducted Fan is a small �ight control experiment whose dynamics are

representative of a VTOL �Vertical Landing and Take o	� aircraft such as Harrier

in hover mode or a thrust vectored aircraft such as F���HARV or X��� in forward

�ight �Mur���� This system has been used for a number of studies and papers� In

particular� a comparison of several linear and nonlinear controllers was performed

in �KBPM��� BBK��� NM���� In this section we describe the simple planar model

of the fan shown in Figure ���� This model is useful for initial controller design and

would serve as a good testbed for purposes of this thesis�

Let �x� y� �� denote the position and orientation of a point on the main axis of the

fan� We assume that the forces acting on the fan consist of a force f� perpendicular
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�x� y�

f�

�

net thrustx

y
f�

adjustable �aps

Figure ���� Schematics of the planar ducted fan�

to the axis of the fan acting at a distance r and a force f� parallel to the axis of

the fan� Assuming m� J � and g to be the mass of the fan� the moment of inertia�

and the gravitational constant respectively� the equations of motion can be written

as follows �HSM����

m�x � �d  x � f� cos � � f� sin �

m�y � �d  y � f� sin � � f� cos � �mg �����

J �� � rf�

where the drag terms are modeled as viscous friction with d being the viscous

friction coe
cient� The numerical data for the experiment are as follows� m �

���� kg� g � ���� m
sec�� J � ������ kg m�� r � ����� m� d � ��� N sec� Note that

due to the use of a counterweight for balancing the fan� the gravitational constant is

not ��� m
s�� It is convenient to rede�ne the inputs so that the origin is an equilibrium

point of the system with zero input� If we let u� � f� and u� � f��mg� the equations

of motion can be written as�
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m�x � �mg sin � � d  x � u� cos � � u� sin �

m�y � mg�cos � � ��� d  y � u� sin � � u� cos �

J �� � ru�� �����

These equations are referred to as the planar ducted fan equations� The following

quadratic performance index was used in the quasi�LPV scheme�

J �

Z �

�

�!xT �t�Q!x�t� � uT �t�Ru�t��dt

where !x � �x  x y  y �  ��T � R and Q is chosen to be diagonal matrices with the following

diagonal terms�

Q � diag�
h

��� � � � � �
i
� �����

R � diag�
h

� �
i
� �����

To obtain a CLF for the ducted fan using quasi LPV methods� we have to choose a

set of varying parameters and bounds on parameter variation in case we are searching

for parameter dependent Lyapunov functions�

For the ducted fan� � � � is chosen as the varying parameter� and the operation

range P � ���
�
� �
�
�� As a �rst attempt� we tried to �nd a quadratic CLF so that no a

priori bound on parameter variation is needed� Unfortunately� the resulting convex

program is not feasible� therefore� we switch to searching for parameter dependent

Lyapunov functions with � as the varying parameter� The bound on the rate variation

on � is set to be ��� i�e�� j  �j � ��� Obvious parameterizations of f and g are given by
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setting A��� and B��� as follows �JYH��b� JYH��a� YJPH����

A��� �

�
�������������

� � � � � �

� � d
m

� � �g sin �
�

�

� � � � � �

� � � � d
m

g�cos ����
�

�

� � � � � �

� � � � � �

�
�������������

B��� �

�
�������������

� �

cos �
m

� sin �
m

� �

sin �
m

cos �
m

� �

r
j

�

�
�������������

�����

A set of polynomial basis functions are chosen to compute X���� i�e�� X��� �
P�

i�� ci���Xi

where Xi
s are symmetric coe
cient matrices �LMI variables� and fci���g are �fth

order Legendre polynomials on P�

fci���g � f��
�

�
�� ���

�

�
��� � ����� ���

�

�
��� � ��

�

�
������

����
�

�
��� � ���

�

�
��� 	 ���
g

Once the CLF is obtained� it can be used as the terminal cost in a receding horizon

optimization� Also� as it was mentioned earlier� if the horizon length is long enough�

the local CLF obtained by solving an LQR problem for the linearized dynamics can

also be used� In the next section� we discuss some simulation results for the planar

ducted fan model� using CLFs from LQR and LPV as a terminal cost in the receding

horizon scheme�
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��� Simulation results

The following initial condition was chosen

h
x  x y  y �  �

i
�
h
�� ��� � � ���	 �

i
�

Simulations were performed for several di	erent horizon lengths� Also� in order to

have a measure for the performance� the �optimal� control trajectories were calculated

by solving �nite horizon optimization problems for long horizon lengths� It can be

seen from the simulation plots that a simple LQR controller does not stabilize the

system� whereas the LPV controller does� This is not surprising since the region of

attraction of the LQR controller is much smaller�

As we include on�line optimization in the process� it can be seen that when a

simple quadratic CLF from LQR is chosen as the terminal cost� the controller is still

not stabilizing the system� Figure ��� depicts x� y trajectories of the ducted fan for

four receding horizon iterations with di	erent horizon lengths of ����� ���� ����� and

��� seconds� As shown in Figure ���� the terminal point is far from the origin� hence

the resulting receding horizon controller is not stabilizing� For long enough horizon

lengths� however� the x � y trajectories converge to the origin� and the resulting

receding horizon controller stabilizes the closed�loop system� as shown in Figure ����

This is due to the fact that the set �rV � de�ned in Section ���� gets larger as the

horizon length is increased� Note that the trajectories also converge to the optimal

ones as T approaches in�nity �see Figure �����

Figure ��� shows that if the horizon length is long enough� the CLF form LQR is

a suitable choice for the terminal cost� However� if the horizon length is short� the

receding horizon with CLF from LQR method does not give a good performance and

in fact the closed�loop system is unstable�

The x�y trajectories for several receding horizon iterations with di	erent horizon

lengths with CLF from LPV is depicted in Figure ���� The initial condition chosen

was the same as in ������ Note the di	erence in the orientation of the fan in the case of
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Figure ���� x�y position of the fan for four one shot trajectories with di	erent horizon
lengths� from ���� sec to ��� second� The resulting receding horizon controllers are
not stabilizing�

LQR and LPV terminal costs� Also� note that the CLF from LPV is stabilizing with

a � horizon length which corresponds to no online computation at all� i�e�� applying

the LPV controller�

One might think that since stability is guaranteed by having a CLF as terminal

cost� any positive de�nite function lower bounded by the CLF would also be a legiti�

mate choice� Simulation results indicate that this is not the case� and merely putting a

quadratic penalty which is greater than the value of the CLF �and therefore an upper

bound on the cost�to�go� is not su
cient� Figure ��� depicts the simulation results

for the receding horizon scheme with having a penalty of the form of �jjx�t � T �jj�

where � � � is chosen such that �jjxjj� � V �x� � x� Shown in Figure ��� are again
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x � y trajectories for various choices of T � Note that even for long horizon lengths�

the performance is not satisfactory at all�

An interesting comparison between the three discussed choices for the terminal

cost is shown in Figure ���� The horizon length is plotted on the horizontal axis� and

the ratio of the actual cost to the optimal cost is plotted on the vertical axis� Note

the fast convergence of the cost to the optimal� when the CLF from LQR is chosen as

the terminal cost� Interestingly� the choice of CLF from LPV as terminal cost starts

at a much lower cost but longer horizon length is needed to converge to the optimal

one�

In fact� for horizon lengths of T � ���� using the CLF from LQR results in a

lower cost due to the fact that the optimal value function is well approximated by the

CLF from LQR method� in a suitable neighborhood of the origin� We can therefore

conclude that the CLF from LPV methods is suitable when long optimization horizons

are not possible due to costly computation� Finally� having a terminal cost of the

form of a quadratic upper bound on the cost�to�go does not work even for very long

horizon lengths�

��� Ducted fan in forward �ight

In the previous section� we dealt with a simpli�ed model of the ducted fan around

hover� The fan was modeled as a rigid body and the aerodynamic forces were totally

ignored� In forward �ight� however� one can no longer ignore the aerodynamic forces

and moments� since they are the dominant forces that make the ducted fan �y�

An activity to build up aerodynamic models for the ducted fan was established at

Caltech �MM��� Hau���� However� obtaining steady state �ight data has proved to

be much more challenging than expected� This is mainly due to a periodic drag force

resulting from the interaction of a wing tip vortex with the walls in the lab� �See

Figures ��� and ��� for a view of the experimental setup��

A �rst step in obtaining suitable models is to familiarize oneself with the �ight

of this vehicle by doing a signi�cant amount of manual �ight� The aggressive ca�



��

Figure ���� The wing has been re�designed to improve the thrust vectoring�

pabilities of the system have been explored through manual �ip and turn around

maneuvers �MM��� HJ��� Tro���� Some of these high angle of attack maneuvers are

depicted in Figure ���� Angle of attacks of close to �� degrees are reported in these

experiments �HJ����

In spite of the problems arising from the periodic drag force� the results look quite

promising� especially for the purpose of obtaining a model that captures the essential

features of the system�

After getting a general picture of the capabilities of the system� an important

step in modeling is to obtain the experimental equilibrium manifold� The equilibrium

manifold is the surface resulting from setting the right�hand side of the equations of

motion to zero� Experimentally� points on this surface can be found by performing

steady �ights at di	erent velocities� Corresponding to each velocity� there is an angle

of attack as well as the thrust force and thrust angle that would keep the vehicle in

that equilibrium point� Figures ���� and ���� depict the experimental and the model

equilibrium manifolds�
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Figure ���� The Caltech ducted fan �MM����
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Figure ����� Schematics of the thrust vectored �ying wing�

����� Modeling

The ducted fan is modeled as a �ying wing with vectored thrust� as in Figure �����

The e	ect of the newly designed thrust vectoring nozzle is modeled as a vectored

force applied at a �xed position on the �ight vehicle� The parameters for this model

were estimated using static force�moment measurements� Using the experimental

equilibrium manifold� a plausible aerodynamic model was obtained�

The equations of motion for the thrust vectored �ying wing of Figure ���� are as

follows�

m  V � �D�V� ���W sin � � T cos�� � �T �

mV  � � L�V� ���W cos � � T sin�� � �T �

 � � q

J  q � M�V� ��� T lT sin��T � �����

where T is the thrust force� and �T is the angle at which thrust is applied� It will

be natural to take as state and control variables x � �V� �� q� ��� where � � � � � is

the �ight path angle� q �  �� and u � �T� �T ��

The physical parameters for this model are m � �� kg� g � ��� m
s�� S � ���� m��

� � ��� kg
m�� lT � ���� m� J � ����kg m�� The lift� drag and moment terms can
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be written as follows�

L�V� �� �
�

�
�V �SCL���

D�V� �� �
�

�
�V �SCD���

M�V� �� �
�

�
�V �S!cCM���� �����

Where !c � ��� m� and CL���� CD���� CM��� are the lift� drag and moment coef�

�cients respectively� Using the experimental data from the equilibrium manifold as

well as estimates of the thrust and thrust angle given in Figures ���� and ����� one

can come up with plausible estimates for the lift� drag and moment coe
cients as

depicted in Figures ���� and �����

From the discontinuity in the lift curve� one can notice that stall occurs between

�� and �� degrees angle of attack� More noticeable is the change in pitching moment

at these angle of attacks� Stall can also be noticed from Figure ���� which depicts

the thrust angle vs� velocity for the equilibrium manifold�

An interesting point worth mentioning is that one would not see the usual drop in

the lift curve after the wing stalls� This is probably due to the fact that the fuselage

housing the fan starts to act as a lifting body at these angle of attacks� Worthwhile

noting is the fact that the lift� drag� and moment curves �t nicely with the equilibrium

manifold data� Locally �i�e�� up to stall�� lift� drag and moment curves are expressed

by the following equations as functions of the angle of attack in radians�

CL��� � Cl�� � ������

CD��� � Cd� � Cd��
� � ������ � �������

CM��� � CM�� � �������� �����

Roughly speaking� the thrust can range from � to ���� N and can be vectored a little

more than �� degrees� i�e�� �T � ���� radians�

While the input variables in the model are the thrust force T and the thrust angle

�T � the control inputs in the experiment are the motor voltage Vm and the commanded
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Figure ����� Experimental and model curves for the lift coe
cient CL����

paddle angle �p� We have the following relationship between the two pair of inputs�

�T � ������p

T � ����Vm � �� �����

Overall� the above model is a plausible description for the Caltech ducted fan� al�

though much work remains in the understanding of the nature of uncertainties� both

external disturbances and model uncertainties�

����� Control of the ducted fan in forward �ight

So far� we have discussed a model of the Caltech ducted fan which is suitable for

control purposes�

Following the discussion in Chapter �� we now develop a quasi LPV scheme to

generate a control Lyapunov function suitable for receding horizon control� The

objective of the controller is to regulate the ducted fan at a speci�c point on the

equilibrium manifold�
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Figure ����� Experimental and model curves for the drag coe
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Our objective is to regulate the ducted fan at V � � m
s� Using Figures ����

and ����� the corresponding angle of attack� thrust� and thrust angle are as follows�

�� � �� � ������	� T� � ������ N� �T� � ����	�

In order to be able to use the quasi�LPV scheme to generate a CLF� we �rst have

to do a coordinate translation so that the desired equilibrium is the origin of the

translated system� The next step is to choose a set of varying parameters� Contrary

to the planar model where only the pitch angle � was the varying parameter� we need

to choose three terms� We would need � out of the three angles �� �� � as well as

the velocity V �

For convenience� �� �� and V are picked� Note that the new states are !V � V �V��
!� � � � ��� and !� � � � ��� Also� !q � q �  �� As can be seen from ������ the model

is not a�ne in control� hence not suitable for use in the LPV scheme� In order to

avoid this problem� the following change of variables are made� and forces in the x

and z direction are chosen as inputs� Fx �� T cos��T � Fz �� T sin��T �� We can now

describe the equations of motion in the new translated coordinates as follows�

 !x � A� !V � !�� !��!x � B� !V � !�� !��!u ������



��

where

!u �� u� u� �

�
� !Fx

!Fz

�
� �

�
� Fx � Fx�

Fz � Fz�

�
� � ������

and

A� !V � !�� !�� ��

�
�������

A�� A�� A�� �

A�� A�� A�� �

� � � �

A�� A�� � �

�
�������

B� !V � !�� !�� ��

�
�������

cos��	�	��
m

sin��	�	��
m

� sin��	�	��

m� �V �V��

cos��	�	��

m� �V �V��

� �

� lT
J

�
�������
�

After a set of rather tedious calculations� the elements of the A matrix can be written

as follows�

A�� � ��

�

� S� !V � �V���Cd� � Cd� �!� � ���
��

m

A�� � ��

�

� V�
�SCd� �!� � ����

m
� g sin�

!� � !�

�
���!� � !���� �

�

�
�
cos��� � �

�
!��Fz�

m
� sin��� � �

�
!��Fx�

m
� sin�

�

�

!�

�
�����

A�� � �g sin�
!� � !�

�
���!� � !����

A�� � ��

�

� SCl� �!� � ���

m
� g

V� � !V � V��
�
Fx� sin����� Fz� cos����

mV� � !V � V��

A�� � �g�cos�!� � !��� ��

�!� � !��� !V � V��
� �

�

� SCl� V�
m

�� �cos��� �
!�

�
�Fx� � sin��� �

!�

�
�Fz�� sin�

�

��
�
�

�
�m� !V � V���

��

A�� �
g�cos�!� � !��� ��

�!� � !��� !V � V��

A�� �
�

�

� � !V � �V��S!cCM� �!� � ���

J

A�� �
�

�

� V�
�S!c CM�

J
� ������

Once the equations of motion are represented in the appropriate state dependent

form� the next step is to formulate a suitable performance index to be used in the
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quasi�LPV scheme�

It is well known that choosing a suitable performance index such that all desired

aspects of the problem are taken into account� can be quite di
cult� We know that

in order to regulate the ducted fan to a point on the equilibrium manifold� the �ight

path angle must be regulated to � therefore� it would be appropriate to put a large

weight on the �ight path angle in the optimization criterion� Since in our quasi�LPV

modeling we did not choose � as the varying parameter� it would be convenient at

this point to choose the �ight path angle � over the pitch angle � to be a state� Hence

we perform the following change of coordinates�

�
�������

V

�

�

q

�
�������

� T


�
�������

V

�

�

q

�
�������

T
 �

�
�������

� � � �

� �� � �

� � � �

� � � �

�
�������
� ������

The new set of coordinates is called the wind coordinates� Also� the following Q and

R matrices are chosen in conjunction with the quasi LPV model to generate a CLF�

Q � diag �� �� � ��

R � diag ������� ��������� ���� ������

The reason for such a choice for R is the relationship between the forces in the x and

z directions and the actual control inputs Vm and �p�

To use the quasi LPV scheme discussed in Chapter �� we �rst have to pick a

gridding region for the varying parameters �states��

Since our simple aerodynamic model is valid locally� the following region is picked

for gridding� V � ��� ��� and �� � � �������	� ������	��

Note that the simulation model �Hau��� MM��� exceeds this local region in terms

of the aerodynamic modeling� For simplicity of the LPV design� we have chosen to

use the above limited gridding region for CLF design�

Also� note that since the CLF is merely a stability safeguard to be used as terminal
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cost in the receding horizon scheme� we would be quite happy with a quadratic CLF�

provided the resulting convex optimization problem is feasible� This would greatly

reduce the number of LMI constraints in equation ������ It turns out that the opti�

mization problem is indeed feasible� and a quadratic CLF does exist� The resulting

CLF is V �x� � xTPx where

P �

�
�������

������ ������� ������� �������

������� ������� ������� ������

������� ������� ������ ������

������� ������ ������ ������

�
�������
� ������

The above CLF is then used in a receding horizon scheme with a horizon length of

T � ��� and sampling rate of � � ���� seconds� Also� to compare the results with

�optimal� trajectories� the horizon length is increased to � seconds�

An important issue is magnitude constraints imposed on the control action� As

was mentioned earlier� the thrust can not exceed ���� Newtons� and can be only

vectored for about �� degrees� This would translate to the following bounds on the

actual control actions Vm and �p�

���� V olts � Vm � ���� V olts

���	 � �p � ��	 ������

In order to simulate the system in the forward �ight mode� the following initial

condition was chosen� V � � m
s � � ���	 � � ���� 	� q � �� The above

initial condition represents a pull�up maneuver� Simulation results are depicted in

Figures ���� and ����� Also� Figures ���� and ���� depict the one shot �optimal�

trajectories for the same initial condition and a longer horizon length of � seconds�

A more interesting way of plotting trajectories is to show the actual trajectory of

the �ying wing in the xz space instead of showing the time trajectories� These plots

are shown in Figures ���� and ���� for the receding horizon and one shot trajectories

respectively� In both �gures� the ducted fan is shown as a �ying wing� with a red
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Figure ����� Simulation results for the ducted fan in forward �ight with a receding
horizon controller RH����� ������ Shown here are the states V� �� �� ��

line representing the thrust� These �gures indicate that with a horizon of only ���

seconds� we get very close to the optimal solution�

One can also include the z dynamics in the equations of motion by letting  z �

V sin �� Using a similar LPV scheme and by penalizing z with a weight of ��� we

obtain a quadratic Lyapunov function Vz�x� � xTPzx with Pz given as follows�

Pz �

�
����������

������� ������� ��������� �������� �������

������� ������� ������� ������� �������

��������� ������� �������� �������� �������

�������� ������� �������� ������� ������

������� ������� ������� ������ ������

�
����������
� ������
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Figure ����� Simulation results for the ducted fan in forward �ight with a receding
horizon controller RH����� ������ Shown here are the controls Vm and �p�
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Figure ����� The x�z trajectories for the ducted fan in forward �ight with a receding
horizon controller RH����� ������ The red lines indicate the thrust� scaled according
to the thrust value�
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Figure ����� The x � z trajectories for the ducted fan in forward �ight with a one
shot controller with T � � seconds� The red lines indicate the thrust� scaled in length
according to the thrust value�
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Figures ���� and ���� depict the simulation results when the desired �ight path angle

� is a square wave� switching between ���	 and ��	� Figure ���� depicts the time

trajectories of the states and controls� whereas Figure ���� shows the trajectory in

the x � z space� As can be seen from both �gures� the controls are saturated most

of the time� Again� it should be noted that the simulation model extends the local

range and includes the stall information� Also� the objective function in the receding

horizon optimizations was the same as in the quasi�LPV scheme�

The resulting receding horizon optimizations were performed using RIOTS �Sch���

in the Matlab environment� Each receding horizon iteration �for a ��� second horizon

length� took about ��� seconds on a Sun Ultra �� machine� The next step is to verify

the simulation results on the actual experiment using a much more e
cient optimal

trajectory solver recently developed at Caltech �MMM����

��� Summary

The purpose of this chapter was to demonstrate the results of Chapters � and � on

two distinct models of the Caltech ducted fan experiment� Equations of motion were

obtained for the hover mode as well as the forward �ight mode� Using quasi�LPV

methods discussed in Chapter ���� two CLFS were obtained and used as a terminal

cost in the receding horizon scheme� Several simulations were performed� and the

results suggested that the proposed receding horizons scheme is suitable for regulation

of the Caltech ducted fan and guaranteeing closed�loop stability�



��

0 2 4 6 8 10
5.8

5.9

6

6.1

6.2

6.3

6.4

Time (Sec.)

V
 m

/s

V

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40
γ(blue), α(green), θ(red)

Time (Sec.)

D
eg

.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1
altitude

Time (Sec.)

m

0 2 4 6 8 10
−1

−0.5

0

0.5

1
V_m (Volts, in blue) and paddle angle (radians, in green)

Time (sec.)

Figure ����� Simulation results for the ducted fan in forward �ight with a receding
horizon controller RH����� ������ Shown here are the time trajectories for V � �� ��
and � as well as controls Vm and �p� The commanded � is switched between ��� and
�� degrees�



��

−5 0 5 10 15 20 25 30 35 40

−20

−15

−10

−5

0

5

10

15

X position (Meters)

A
lti

tu
de

 (
M

et
er

s)

Figure ����� Simulation results for the ducted fan in forward �ight with a receding
horizon controller RH����� ������ Shown here is the phase trajectory in the x � z
plane� The �ying wing represents the ducted fan and the red line depicts the thrust�
scaled in length according to the actual thrust value� The commanded � is switched
between ��� and �� degrees�
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Chapter � Receding horizon trajectory

generation for the Caltech ducted fan

��� Trajectory generation and morphing

So far� we have outlined a receding horizon strategy which utilizes an a priori obtained

terminal cost to guarantee closed�loop stability� However� it was assumed that the

goal of the control strategy is to regulate the states to an equilibrium point� such as

the origin�

Although this is an important task on its own� and there exist a plethora of results

for addressing this problem� there are much fewer results that successfully address the

issue of trajectory generation for a general nonlinear system� In this case� the main

question being asked is not about �nding a stabilizing controller� but about �nding

a pair of solutions �x� u� in the trajectory space of the system  x � f�x� u�� such that

the pair �x� u� is �close enough� to a desired maneuver� In other words� instead of

asking the system to �just get to the desired point�� one would like to �rst provide a

trajectory� and then regulate the system along that�

This has led to the two degree of freedom paradigm �see �NM��� MMM��� and

the references therein�� In this approach� the problem can be divided to two phases�

The �rst phase deals with generating a state and control trajectory that respects the

dynamics and other possible input and state constraints� and the second phase is to

design a controller that would regulate the system around the trajectory�

Luckily� there exist a class of systems for which this problem can be easily tackled�

It is known that if a system is di
erentially �at �FLMR���� the problem of trajectory

generation reduces to solving a set of algebraic equations� Loosely speaking� a system

is di	erentially �at� if there exist an output known as the �at output� such that states

and the input can be written as a function of the �at output and a �nite number of
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its derivatives� It can be shown that all linear systems are di	erentially �at� as well

as nonlinear systems that are feedback equivalent to a linear system� Unfortunately�

it is extremely di
cult� in general� to determine whether a given nonlinear system

is di	erentially �at� Moreover� there are a lot of nonlinear systems that are not

di	erentially �at�

The ducted fan in forward �ight is an example of a nonlinear system which is not

di	erentially �at� How should we go about generating trajectories for such a system"

This is the question we intend to address in this chapter�

Our approach for trajectory generation and tracking is based on combining the

phase one and phase two of the above mentioned two degree of freedom paradigm�

Using the idea of trajectory morphing �HM��b�� we parameterize the trajectories

of a complicated nonlinear system by those of a simpler one� With a homotopy con�

necting the simple system to the complicated one� one may morph simple trajectories

to those of the complicated system� One thus seeks a simple system for which trajec�

tory exploration and speci�cation is tractable and that is su
ciently rich to capture

the essential dynamic coupling of the target system� In an extreme case of simpli��

cation� one could use the system obtained by Jacobian linearization of the nonlinear

dynamics as the simple system�

To illustrate this point� consider the following optimization problem�

minimize
�

�

Z tf

t�

k�x���� xd���� u���� ud����k�d�

subject to  x�t� � f�x�t�� u�t��� t � �t�� tf �

x�t�� � xd�t��

where f describes the dynamics of the complicated system and the integrand may be

a weighted square� Also� we might include a terminal cost to condition the problem�

The above nonlinear least square problem would result in a trajectory �x� u� that

is closest in an L� sense� to that of the simpli�ed system�

Morphing makes use of the fact that we know that �xd� ud���� satis�es the equations

of motion for the simpli�ed system� Thus� after a suitable augmentation of the
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simpli�ed state and controls� we may de�ne a homotopy connecting the simple system

f� and the complicated system f � e�g�� f� � ��� 
�f� � 
f � We know the solution of

the above optimization problem when f � f�� it is simply �xd� ud�� If f and f� are

well chosen �e�g�� by a clever engineer�� then 
 can be continued from � to � resulting

in a trajectory of the complicated system that resembles the prototype trajectory of

the simple system�

Since the simple system is often di	erentially �at� the desired trajectory can be

easily generated� If the simpli�ed system captures the essential dynamics and fea�

tures of the more complicated model� one can also use a receding horizon scheme

to morph the trajectories of the simpli�ed model to those of the more complicated

one� instead of using the above mentioned homotopy argument� Due to the fact that

the receding horizon approach results in a sampled data feedback� �often times� a

stabilizing controller around the trajectory is also generated� therefore removing the

need for a tracking controller and combining both phases of the two degree of freedom

paradigm�

Of course the issue of a suitable terminal cost becomes an important one� since

the usual methods of obtaining a CLF are only valid for regulation around the trivial

trajectory� i�e�� the equilibrium at the origin� In order for our stability arguments to

be valid� the terminal cost should be a CLF proving stability of the system around

the trajectory of the full model� Such CLF is in general impossible to �nd� since we

do not know the trajectory of the full model a priori�

However� we know from Theorem ����� that for a long enough horizon length� the

terminal cost becomes unnecessary for guaranteeing stability� although it might be

still useful to have one to condition the problem numerically�

Before moving to trajectory generation for the vectored thrust model ������ we

consider the planar ducted fan equation ������
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��� Trajectory generation for the planar ducted

fan

The planar ducted fan is a di	erentially �at system� However� to illustrate the re�

ceding horizon trajectory morphing scheme� it would be instructive to use it as an

example of our trajectory morphing scheme� We would like to consider the following

simpli�cation of the planar equations in ������

m�x � �f� sin �

m�y � f� cos � �mg �����

J �� � rf�

As can be seen from the above equations� we have ignored the e	ect of f� on the

x and y dynamics� With this simpli�cation� we can choose x and y to be the �at

outputs�

Our goal is to generate a trajectory for the simpli�ed dynamics in ������ and morph

that into a trajectory of ������

Consider the following desired values for x and y�

xd � ��� cos�����t� yd � ��

The above choice of xd results in the following choice for �d�

�d � � arctan�
�xd

����
� � � arctan����� sin�����t���

Once �d is computed� one can compute f�d and f�d to be the following

f�d �
mg

cos �
f�d � ��d

J

r
�

Now that the desired trajectory is available� we can use it as a reference in the least

square optimization discussed earlier� We choose a �long� horizon length of � seconds
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to ensure stability of the receding horizon scheme�

Simulation results are depicted in Figure ���� Perfect tracking is obtained in x

and �� while there is a tracking error in y� This is perhaps due to the fact that the

desired trajectory is not a trajectory of the full model�

In the next section� we discuss some �ight maneuvers for the vectored thrust model

of the ducted fan in forward �ight�
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Figure ���� The desired trajectory �in red�� and the actual trajectory �in black� for
the planar ducted fan model� Shown here are the ducted fan positions x and y� as
well as the pitch angle � and the control action f��
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��� Trajectory generation for the Caltech ducted

fan in forward �ight

As we have seen in Chapter �� the Caltech Ducted Fan� modeled as a vectored thrust

�ying wing� is a highly nonlinear system with unique capabilities� From experience

�and simple experiments�� we know that operation near steady �ight conditions can be

easily achieved� Moreover� it is not too di
cult to compute the associated equilibrium

state and control values� as we did in Chapter �� It is a much more di
cult matter

to specify feasible non�equilibrium trajectories� especially aggressive maneuvers that

push the limits of performance�

The use of vectored thrust allows us to operate the ducted fan beyond the friendly

linear aerodynamic regime� providing unique opportunities� For example� during a

dive recovery� one may sacri�ce a certain amount of energy �while creating high drag�

for the sake of improved maneuverability �higher lift plus thrust vectoring��

How may we approach the speci�cation of high performance� or aggressive� ma�

neuvers" Although models of the sort described above are nearly di	erentially �at�

we suspect that the presence of aerodynamic forces and moments breaks the neces�

sary symmetries� Hence� trajectory generation for such a problem is by no means

simple� To make things worse� the trajectory generation scheme has to handle input

constraints as well�

In the case of the vectored thrust �ying wing� one may obtain a simpli�ed model

by removing from consideration the �internal� pitch dynamics and then using the

angle of attack � as a pseudo�control together with the thrust T � This results in a

system with two states and two controls�

m  V � �D�V� ���W sin � � T cos���

mV  � � L�V� ���W cos � � T sin����
�����

Where V and � are the states� and T and � are the controls� Given a trajectory

�Vd���� �d���� Td���� �d���� of the system ������ we build up a desired trajectory for the
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full system ����� by de�ning qd��� as the �approximate� if necessary� derivative of

��d � �d���� and choosing �t�d so that

J  qd � M�Vd� �d�� Tdl� �t�d

if �t�d��� is su
ciently small �keeping the sin otherwise�� The desired trajectory is

then de�ned to be xd��� � �Vd� �d� qd� �d���� and ud��� � �Td� ���d�����

��� Aggressive maneuvers

In this section we present some of the aggressive maneuvers obtained by implementing

the morphing technique in a receding horizon fashion on maneuvers developed using

the simpli�ed model�

Note that as we mentioned earlier� in addition to actually generating trajectories of

the more complicated system� the receding horizon approach also provides a �sampled

data� feedback�

To get an idea of the maneuverability of the ducted fan� we �rst push the �ying

wing through a number of periodic climb�dive maneuvers similar to what we have

�own of the real ducted fan� The period of the maneuvers was chosen to be � seconds�

Figures ��� and ��� show the nature of these maneuvers as time trajectories� We

see that the simpli�ed system actually does a decent job of specifying approximate

trajectories� The actual trajectories of the ducted fan for the above two cases are

plotted in Figures ��� and ��� respectively�

A standard aerobatic maneuver for reversing direction is made up of a half loop�

better known as an Immelman� For the ducted fan �in up and away �ight sans �oor

and ceiling�� the idea is to make the �ight path angle � go from � degrees to ���

degrees� The piloted maneuver would be completed with a ��� degree roll but we

have no roll axis with the ducted fan and� moreover� the ducted fan can easily �y

inverted since the system is more or less symmetric� Figures ��� and ��� show such

a maneuver� Once again� the simpli�ed system works quite well� In this �gure� we
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�ight path angle � change� Note that the angle of attack � approaches �� degrees�
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have actually plotted the entire set of one second optimal trajectories �with artifacts

between them��
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Figure ���� Immelman maneuver for reversing direction� Note the radical change in
�p as stall is encountered�

��� Numerical considerations

The simulations presented in this chapter were performed using RIOTS �Sch��� in the

Matlab environment� The software package RIOTS is a general purpose trajectory

optimization solver� �rst� the problem is reduced to a nonlinear program and then

the resulting nonlinear program is solved by NPSOL Version ��� �GMSW��� using

a sequential quadratic programing �SQP� algorithm� RIOTS uses a method known
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Figure ���� The actual trajectory of the ducted fan in the x�z plane is shown during
an Immelman maneuver� Thrust is represented by red lines� the length of which is
scaled with the magnitude of thrust�
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as consistent approximations �Pol���� In this approach� a solution is obtained as an

accumulation point of the solutions to a sequence of discrete�time optimal control

problems that are consistent approximations to the original continuous�time opti�

mal control problem� The discrete�time optimal control problems are constructed by

discretizing the system dynamics with Runge�Kutta integration method and by pa�

rameterizing the control with �nite�dimensional B�splines �Sch���� Note that in this

approach� only the control trajectory is parameterized� The control trajectory is fed

into the system dynamics as a function of time� and the resulting system is solved

using Runge�Kutta methods�

Since this is performed in an open�loop fashion� it su	ers from instability of shoot�

ing �Hau���� This makes it extremely di
cult to solve optimization problems for

horizon lengths of more than � seconds�

An alternative approach is to use collocation methods �MMM���� and parameterize

both state and control trajectories� At certain collocation points� the dynamics are

enforced� reducing the problem into a nonlinear program with equality constraints�

Using ideas from di	erential �atness� this can be done in a very e
cient manner�

opening up the possibility of running the optimizations real�time �MMM����

��� Summary

The purpose of this chapter was to demonstrate the use of receding horizon strategies

for trajectory generation and tracking� Using an approach known as morphing� tra�

jectories were obtained for a simpli�ed model of the system under consideration� A

least squares optimization problem is then formulated and solved in a receding hori�

zon fashion� such that a sampled data receding horizon feedback controller is obtained

at the same time as the trajectory of the full system�

These results were demonstrated in simulations on the planar model as well as

the thrust vectored forward �ight model of the Caltech ducted fan�
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Chapter � Conclusions

��� Thesis summary

The purpose of this thesis was to develop optimization�based control schemes that are

suitable for control of unmanned aerial vehicles� The developed scheme is based on a

receding horizon control strategy� also known as model predictive control or moving

horizon control�

The main idea behind receding horizon control is to solve a series of open�loop

�nite horizon optimal control problems in real time� The control trajectory resulting

from this optimization is then applied to the system under consideration for a small

fraction of the horizon length� after which a new state measurement is made and this

process is repeated�

Although this idea and its variants have been used in industry and extensively

studied� its use has only been limited to problems in process control industry� where

the processes are usually open�loop stable and have large time constants�

With the advent of faster and cheaper computers� as well as state of the art

numerical methods for solving nonlinear optimization problems faster than ever� it

was suspected that this technology can be used beyond process control�

The main obstacle in applying the receding horizon technology in stability critical

areas such as �ight control has been the fact that existing methodologies were not

tailored for such purposes� Moreover� even the few theoretical results that dealt with

nonlinear systems had very high computational cost�

We developed a theoretical framework for stability analysis of receding horizon

controllers� based on utilizing a control Lyapunov function as terminal cost� It was

shown that if an appropriate control Lyapunov function �obtained o	�line� is used as a

terminal cost� the stability of the receding horizon scheme can be guaranteed without

the need for imposing additional stability constraints� Speci�cally� it was shown that
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the region for which the unconstrained receding horizon scheme is stabilizing can be

computed and estimated� Furthermore� we proved that this region can be grown to

contain any compact subset of the in�nite horizon region of attraction�

We showed that the horizon length can be thought of as a homotopy parameter�

which can have a CLF controller at one extreme �no optimization�� and the opti�

mal control �in�nite horizon optimization� at the other� Also� in another important

proposition� we showed that there always exists a �nite horizon length for which the

receding horizon scheme is stabilizing even without the presence of a terminal cost�

Several propositions and theorems were stated and proven� illustrating the exponen�

tial convergence of the resulting receding horizon trajectories to the origin�

Also� it was shown that the requirement that truly optimal trajectories be com�

puted can be relaxed by an improvement condition� This was illustrated by an in�

structive example� showing that sub�optimal controllers can sometimes be even more

desirable� We also proposed a number of possible approaches that provide the CLF

suitable for receding horizon purposes�

One of these approaches provided local CLFs based on the linearization of the

nonlinear system at the origin� and using the linear quadratic regulator theory� while

another� used the more sophisticated approach of quasi�Linear Parameter Varying

�quasi�LPV� methods� generating state dependent Lyapunov functions resulting in

larger regions of attractions� This was based on solving a convex optimization problem

o	�line�

These results were then applied to a model Unmanned Aerial Vehicle �UAV��

known as the Caltech ducted fan� The Caltech ducted fan is a tethered �ying wing

developed as a testbed for �ight control� Two modes of operation of the Caltech

ducted fan� namely hover and forward �ight modes� were considered� Several simu�

lation studies and numerical experiments were performed to illustrate the developed

theory�

A simpli�ed model ignoring the aerodynamic forces was developed for the hover

mode� Two di	erent CLFs were chosen as terminal costs and comparisons were made

to explain the theoretical contributions in more detail�
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For the forward �ight mode� the ducted fan was modeled as a thrust vectored

�ying wing� and aerodynamic forces and moments were taken into account� The

model parameters were veri�ed by performing a series of experiments to develop the

experimental equilibrium manifold� It was shown that the model and experimental

equilibrium manifolds follow each other closely�

In the next step� we chose an operating condition and developed a state dependent

representation of the forward �ight model� suitable for use in the quasi�LPV scheme�

Simulation results indicated that the obtained results are indeed close to the optimal

solution�

In Chapter �� we touched on the issue of trajectory generation� and used the idea of

trajectory morphing to generate trajectories for the planar ducted fan model as well as

aggressive maneuvers for forward �ight� The main idea behind the morphing concept

was to use a simpli�ed version of the model which captured the essential dynamics of

the system� to generate aggressive maneuvers� Once these maneuvers were generated�

they can be morphed to trajectories for the original complicated model by solving a

least square optimization in a receding horizon fashion� The obtained results were

quite promising�

In the next section we talk about possible future directions�

��� Future research directions

����� Running the experiment

The next obvious step in this research will be using the developed receding hori�

zon methodology on the actual experiment� In fact� with availability of trajectory

generation software developed at Caltech �MMM���� it would be possible to try the

stabilization schemes on the experimental setup� Currently� this work is underway at

Caltech to use the trajectory generation software in conjunction with the experiment�

The removal of stability constraints has sped up the optimizations drastically� There�

fore� we expect that using e
cient software in conjunction with our results would
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make it possible to run the receding horizon scheme on the experiment in real time�

����� Inclusion of state constraints

As was mentioned in the Introduction� one of the main advantages of optimization�

based control schemes is their ability to handle constraints�

As far as the theoretical results are concerned� the method developed in this thesis

can provably handle input and state constraints as long as the CLF can handle them

as well� We showed how to use the same unconstrained CLF in the constrained case�

However� as we saw in the thesis� the region of attraction gets smaller when the

constraints are present� There are quite a few papers in the literature that propose

methods for generating CLFs in the presence of input constraints� State constraints

are� on the other hand� more di
cult to handle� Perhaps the same methodology of

using the unconstrained CLF� and getting a smaller region of attraction� can be a

�rst step�

����� Multi vehicle extensions and decentralized control

The ultimate goal of this research project is to develop a decentralized� optimization

based scheme for control of �ocks of UAVs rather than just one� The single vehicle

platform was just a starting point to establish the fact that receding horizon method�

ology is suitable for control of UAVs� A next step would be to use two vehicles�

perhaps the actual experimental setup in addition to a virtual vehicle which can be

in a computer�

The idea would be to try to tackle issues that do not appear in the single vehicle

case� such as decentralization� coordination� communication and con�ict resolution�

In the multi vehicle case� a challenge would be the design of decentralized con�

trollers� In this setting� each vehicle would have only partial information about the

state of other neighboring vehicles� This problem is well documented and well�known

to be di
cult in control literature� It would be interesting to pursue this in a reced�

ing horizon setting� Stability arguments will be undoubtedly more challenging� and
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search for suitable terminal costs seem to be important issues�

����� Fault tolerance and online adaptation

A very important aspect of any �ight control scheme is its ability to handle faults and

adapt to changes in the environment and�or system� One of the possible advantages

of online control schemes is their ability to adapt to changes� Since the control is not

pre�programed� and is computed in real time� sudden changes in the cost function�

dynamics and�or constraints can be handled� Of course� the choice of a terminal cost

becomes a crucial one� since that usually requires o	�line calculations� One possible

direction to pursue would be generating the CLF in parallel to the optimization� In

particular� when the simple CLF from LQR is chosen as terminal cost� one can solve

Ricatti equations� in real�time� so that the CLF can be changed if necessary�

����� Uncertainty management

Throughout this thesis� the focus has been on developing sub�optimal control schemes

that can handle nonlinearity� An aspect which has not been addressed is the issue

of uncertainty� Although there are various approaches available for addressing uncer�

tainty in linear systems� there are not nearly as many for nonlinear systems� There

have been various attempts to address robustness by solving min�max optimization

problems in a receding horizon setting� but so far none these have been amenable to

real time calculations�

There are many possible directions that one can pursue for uncertainty manage�

ment� Speci�cally� it would be interesting to �nd out whether use of CLFs that are

obtained having robustness in mind� will do any better in terms of disturbance rejec�

tion� Due to the di
culty of solving min�max problems in real time� it is not possible

to address the robustness issue in a direct fashion� However� a starting point would

be to use a CLF derived using robust methods� such as those from H� approaches�

It is well known from the full information H� control theory that the worst case

disturbance as well as the optimal controller are both of the state feedback form�
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These results have also been extended to the Linear Parameter Varying �LPV� and

quasi�LPV cases� By augmenting the objective function in the robust receding hori�

zon scheme with the a priori computed worst case disturbance� the min�max problem

can be turned into a minimization problem� which can then be solved in a receding

horizon framework having the CLF from H	 methods as terminal cost�

����	 Software development

Another important issue is the development of proper optimal control software pack�

ages� The newly developed software package �MMM��� has addressed a signi�cant

number of issues that were not properly addressed in RIOTS �Sch���� However� there

are still some problems that need to be studied further� One important issue is the

choice of collocation points� How many of these points does one need to pick to guar�

antee satisfactory performance" How should the gridding be performed" These are

some of the issues that need to be addressed in a more rigorous fashion�

����� Trajectory generation and morphing

As we saw in Chapter �� trajectory morphing ideas can be used in conjunction with

receding horizon schemes to generate trajectories for nonlinear systems such as the

vectored thrust model of the Caltech ducted fan in forward �ight� We mentioned

that for long enough horizon lengths� the terminal cost is not necessary for stability

guarantees� and we used that to justify the receding horizon morphing scheme� More

theoretical work is needed to come up with rigorous conditions under which the re�

ceding horizon morphing technique is successful� It should be noted that when the

trajectory ends up in an equilibrium point� the same machinery that was developed

in this thesis can be used to guarantee stability of the receding horizon�morphing

scheme� In order to develop a complete theory� one should answer questions such as�

When can the morphing be successful without the homotopy argument" Are there

any better ways to transition from trajectories of simpli�ed models to the more com�

plicated ones� other than forming convex combinations" Under what conditions can
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we perform the morphing� in a receding horizon setting� and what would be a suitable

terminal cost for shorter horizon lengths" The answers to these questions would help

develop a nice framework for aggressive maneuvering and trajectory generation for

nonlinear systems�



���

Bibliography

�AF��� M� Athans and P� L� Falb� Optimal Control� McGraw�Hill� New York�

�����

�Art��� Z� Artstein� Stabilization with relaxed controls� Nonlinear Anal��

����������(����� �����

�Ath��� M� Athans� The role and use of the stochastic linear quadratic Gaus�

sian problem in control system design� IEEE Transactions on Automatic

Control� ����������(���� December �����

�BBK��� B� Bodenheimer� P� Bendotti� and M� Kantner� Linear parameter�varying

control of a ducted fan engine� International Journal of Robust and Non�

linear Control� ������(����� Nov �����

�BCD��� M� Bardi and I� Capuzzo�Dolcetta� Optimal Control and Viscosity Solu�

tions of Hamilton�Jacobi�Bellman Equations� Birkhauser� Boston� �����

�Bel��� R� Bellman� The theory of dynamic programming� In Proc� Nat� Acad�

Sci� USA� number ��� �����

�BFL���� G� Balas� I� Fialho� L� Lee� V� Nalabantoglu� A� Packard� W� Tan�

E� Wemho	� G� Wolodkin� and F� Wu� Theory and application of linear

parameter varying control techniques� In Tutorial presented at the 
��	

Automatic Control Conference� Albuquerque� NM� �����

�BGFB��� S� Boyd� L� El Ghaoui� E� Feron� and V� Balakrishnan� Linear Matrix In�

equalities in System and Control Theory� volume �� of Studies in Applied

Mathematics� SIAM� Philadelphia� PA� June �����

�BGW��� R� R� Bitmead� M� Gevers� and V� Wertz� Adaptive Optimal Control�

Prentice Hall� Englewood Cli	s� N�J�� �����



���

�BH��� A� E� Bryson and Y� C� Ho� Applied Optimal Control� Taylor ) Francis�

Bristol� PA� �����

�BMH��� G� Buttazzo� G� Mariano� and S� Hildebrandt� Direct Methods in the

Calculus of Variations� Oxford University Press� New York� �����

�CA��� H� Chen and F� Allg�ower� A quasi�in�nite horizon nonlinear model predic�

tive control scheme with guaranteed stability� Automatica� �������(�����

�����

�CDM��� J�R� Cloutier� C�N� D
Souza� and C�P� Mracek� Nonlinear regulation and

nonlinear H� control via the state�dependent riccati equation technique�

In Proc� 
st Internat� Conf� on Nonl� Problems in Aviation and Aeras�

pace� Daytona Beach� FL� �����

�Ces��� L� Cesari� Optimization � Theory and Applications� Problems with Ordi�

nary Di
erential Equations� Springer�Verlag� New York� �����

�CM��� D� Chmielewski and V� Manousiouthakis� On constrained in�nite�time

linear quadratic optimal control� Systems and Control Letters� ������(

���� �����

�CMT��a� D� W� Clarke� C� Mohtadi� and P� S� Tu	s� Generalized predictive

control(I� The basic algorithm� Automatica� ������(���� �����

�CMT��b� D� W� Clarke� C� Mohtadi� and P� S� Tu	s� Generalized predictive

control(II� Extensions and interpretations� Automatica� ������(����

�����

�CR��� C� R� Cutler and B� L� Ramaker� Dynamic matrix control( A computer

control algorithm� In Joint Automatic Control Conf�� San Francisco�

California� �����

�CS��� C� Chen and L� Shaw� On receding horizon feedback control� Automatica�

pages ���(���� �����



���

�DAC��� P� Dorato� C� Abdallah� and V� Cerone� Linear�Quadratic Control� An

Introduction� Prentice Hall� Englewood Cli	s� New Jersey� �����

�Dan��� G� B� Dantzig� Maximization of a linear function of variables subject

to linear inequalities� In T� C� Koopmans� editor� Activity analysis of

production and allocation� volume ���� of Cowles comission monograph�

John Wiley� New York� �����

�DGKF��� J�C� Doyle� K� Glover� P� Khargonekar� and B� Francis� State�space solu�

tions to standard H� and H� control problems� IEEE Transactions on

Automatic Control� ���������(���� Aug �����

�Doy��� J� C� Doyle� Guaranteed margins for LQG regulators� IEEE Transactions

on Automatic Control� ���������(���� Aug �����

�FLMR��� M� Fliess� J� Levine� Ph� Martin� and P� Rouchon� Flatness and defect

of non�linear systems� introductory theory and examples� International

Journal of Control� �������(����� �����

�GM��� C� E� Garcia and A� M� Morshedi� Quadratic programming solution of dy�

namic matrix control �QDMC�� Chemical Engineering Communications�

�����(��� �����

�GMSW��� P� E� Gill� W� Murray� M� A� Saunders� and M� H� Wright� User
s guide

for NPSOL �version ����� a fortran package for nonlinear programming�

Stanford University SOL ����� Stanford University� Revised� July �����

�GMW��� P� E� Gill� W� Murray� and M� H� Wright� Practical Optimization� Aca�

demic Press� London and New York� �����

�GPM��� C� E� Garc*+a� D� M� Prett� and M� Morari� Model predictive control�

Theory and practice ( A survey� Automatica� ���������(���� May �����

�Hau��� J� Hauser� Personal Communications� �����



���

�HJ��� Y� Huang and A� Jadbabaie� Nonlinear H� control� an enhanced quasi�

LPV approach� In Proceedings of the IFAC World Congress� Vol� F�

pages ��(��� �����

�HJ��� J� Hauser and A� Jadbabaie� Aggressive maneuvering of a thrust vec�

tored �ying wing� A receding hoizon approach� In IEEE Conference on

Decision and Control� Sydney� Australia� �����

�HM��a� J� Hauser and D� G� Meyer� The trajectory manifold of a nonlinear control

system� In IEEE Conference on Decision and Control� pages ����(�����

�����

�HM��b� J� Hauser and D� G� Meyer� Trajectory morphing for nonlinear systems�

In American Control Conference� pages ����(����� �����

�HSM��� J� Hauser� S� Sastry� and G� Meyer� Nonlinear control design for slightly

nonminimum phase systems � application to v�stol aircraft� Automatica�

������(���� �����

�Hua��� Y� Huang� Nonlinear Optimal Control� An enhanced quasi�LPV ap�

proach� PhD thesis� California Institute of Technology� Pasadena� CA�

�����

�JYH��a� A� Jadbabaie� J� Yu� and J� Hauser� Receding horizon control of the

Caltech ducted fan� A control Lyapunov function approach� In IEEE

Conference on Control Applications� pages ��(��� �����

�JYH��b� A� Jadbabaie� J� Yu� and J� Hauser� Stabilizing receding horizon control of

nonlinear systems� A control Lyapunov function approach� In American

Control Conference� pages ����(����� �����

�Kal��� R� E� Kalman� Contributions to the theory of optimal control� Bol� Soc�

Mat� Mexicana� �����(���� �����



���

�Kal��� R� E� Kalman� When is a linear control system optimal" J� Basic Engrg�

Trans� ASME Ser� D� �����(��� �����

�KB��� R� E� Kalman and R� Bucy� New results in linear �ltering and prediction

theory� J� Basic Eng�� Trans� ASME� Ser� D� �����(���� �����

�KBK��� W� H� Kwon� A� N� Bruckstein� and T� Kailath� Stabilizing state feedback

design via the moving horizon method� International Journal of Control�

���������(���� �����

�KBPM��� M� Kantner� B� Bodenheimer� P�Bendotti� and R� M� Murray� An experi�

mental comparison of controllers for a vectored thrust ducted fan engine�

In American Control Conference� pages ����(����� �����

�KG��� S� Keerthi and E� Gilbert� Optimal in�nite�horizon feedback laws for a

general class of constrained discrete�time systems� Stability and moving�

horizon approximations� Journal of Optimization Theory and Applica�

tions� pages ���(���� �����

�KKK��� M� Kristi*c� I� Kanellakopoulos� and P� Kokotovi*c� Nonlinear and Adaptive

Control Design� John Wiley ) Sons� New York� �����

�Kle��� B�L� Kleinman� An easy way to stabilize a linear constant system� IEEE

Transactions on Automatic Control� ������� �����

�KP��� W�H� Kwon and A�E� Pearson� A modi�ed quadratic cost problem and

feedback stabilization of a linear system� IEEE Transactions on Auto�

matic Control� ���������(���� �����

�LH��� M� C� Lai and J� Hauser� Computing maximal stability region using a

given Lyapunov function� In American Control Conference� pages ����(

����� �����

�LM��� E� B� Lee and L� Markus� Foundations of Optimal Control Theory� Wiley�

New York� �����



���

�LP��� A� I� Lur
e and V� N� Postnikov� On the theory of stability of control

systems� Applied Mathematics and Mechanics� ����� �����

�ML��� M� Morari and J� H� Lee� Model predictive control� past� present� and

future� Computers and Chemical Engineering� ������(���� �����

�MM��� H� Michalska and D�Q� Mayne� Robust receding horizon control of con�

strained nonlinear systems� IEEE Transactions on Automatic Control�

�����������(����� November �����

�MM��� M� Milam and R� M� Murray� A testbed for nonlinear �ight control

techniques� The Caltech Ducted Fan� In IEEE Conference on Control

Applications� pages ���(���� Big Island� Hawaii� �����

�MMM��� M� Milam� K� Mushambi� and R� M� Murray� A computational approach

to real�time trajectory generation for constrained mechanical systems� In

IEEE Conference on Decision and Control� �����

�MRRS��� D� Q� Mayne� J� B� Rawlings� C�V� Rao� and P�O�M� Scokaert� Con�

strained model predictive control� Stability and optimality� Automatica�

���������(���� �����

�MS��� L� Magni and R� Sepulchre� Stability margins of nonlinear receding hori�

zon control via inverse optimality� Systems and Control Letters� ������(

���� �����

�Mur��� R�M� Murray� Modeling of the Caltech ducted fan� class notes for cds

���� Technical report� California Institute of Technology� Control and

Dynamical Systems ���(��� Pasadena� CA ������ �����

�NM��� M�van Nieuwstadt and R� M� Murray� Real time tarjectory generation

for di	erentially �at systems� In Proceedings of the 
��� IFAC World

Congress� �����



���

�NMS��� G� De Nicolao� L� Magni� and R� Scattolini� Stabilizing receding�horizon

control of nonlinear time�varying systems� IEEE Transactions on Auto�

matic Control� ����������(����� �����

�NN��� Yu� Nesterov and A� Nemirovsky� Interior�point polynomial methods

in convex programming� volume �� of Studies in Applied Mathematics�

SIAM� Philadelphia� PA� �����

�PG��� D� M� Prett and R� D� Gillette� Optimization and constrained multivari�

able control of a catalytic cracking unit� In AIChE Meeting� Houston�

TX� �����

�PN��� J�A� Primbs and V� Nevistic� Feasibility and stability of constrained �nite

receding horizon control� Automatica� ���������(���� �����

�PND��� J� A� Primbs� V� Nevisti*c� and J� C� Doyle� A receding horizon generaliza�

tion of pointwise min�norm controllers� IEEE Transactions on Automatic

Control� ������(���� June �����

�Pol��� E� Polak� On the use of consistent approximations in the solution of

semi�in�nite optimization and optimal control problems� Mathematical

Programing� ������(���� �����

�Ponan� L� S� Pontryagin� Optimal control processes� Uspehi Mat� Nauk� ����(���

���� �in Russian��

�Pri��� J� A� Primbs� Nonlinear Optimal control� A receding horizon approach�

PhD thesis� California Institute of Technology� Pasadena� CA� �����

�PZ��� T� Parisini and R� Zoppoli� A receding horizon regulator for nonlinear

systems and a neural approximation� Automatica� �������(����� �����

�RM��� J� B� Rawlings and K� R� Muske� The stability of constrained receding

horizon control� IEEE Transactions on Automatic Control� �����������(

����� �����



���

�Roy��� H� L� Royden� Real Analysis� Macmilan� New York� �����

�RRTP��� J� Richalet� A� Rault� J� L� Testud� and J� Papon� Model predic�

tive heuristic control� Applications to industrial processes� Automatica�

���������(���� �����

�SA��� J� Shamma and M� Athans� Analysis of gain scheduled control for non�

linear plants� IEEE Transactions on Automatic Control� pages ���(����

�����

�SA��� J� Shamma and M� Athans� Guaranteed properties of gain scheduled

control for linear parameter�varying plants� Automatica� pages ���(����

�����

�SA��� J� Shamma and M� Athans� Gain�scheduling� Potential hazards and

possible remedies� IEEE Control Systems Magazine� ���������(���� June

�����

�Sch��� A� Schwartz� Theory and Implementation of Numerical Methods Based

on Runge�Kutta Integration for Optimal Control Problems� PhD Disser�

tation� University of California� Berkeley� �����

�SCH���� M� Sznaier� J� Cloutier� R� Hull� D� Jacques� and C� Mracek� Reced�

ing horizon control lyapunov function approach to suboptimal regula�

tion of nonlinear systems� Journal of Guidance� Control� and Dynamics�

���������(���� �����

�SD��� M� Sznaier and M� J� Damborg� Heuristically enhanced feedback con�

trol of constrained discrete�time linear systems� Automatica� ������(����

�����

�SMR��� P� Scokaert� D� Mayne� and J� Rawlings� Suboptimal model predictive

control �feasibility implies stability�� IEEE Transactions on Automatic

Control� ������(���� March �����



���

�Son��� E�D� Sontag� A ,universal
 construction of Artstein
s theorem on nonlin�

ear stabilization� Systems and Control Letters� ���������(���� �����

�SR��� P� Scokaert and J� Rawlings� Constrained linear quadratic regulation�

IEEE Transactions on Automatic Control� �������(����� August �����

�Tho��� Y�A� Thomas� Linear quadratic optimal estimation and control with

receding horizon control� Electronic Letters� �����(��� �����

�Tro��� M� Trotoux� Personal Communications� �����

�vdS��� A� J� van der Schaft� On a state space approach to nonlinear H� control�

Systems and Control Letters� �����(�� �����

�vdS��� A� J� van der Schaft� L��Gain and Passivity Techniques in Nonlinear

Control� volume ��� of Lecture Notes in Control and Information Sci�

ences� Springer�Verlag� London� �����

�Wri��� M� H� Wright� The interior�point revolution in constrained optimization�

In R� DeLeone� A� Murli� P� M� Pardalos� and G� Toraldo� editors� High�

Performance Algorithms and Software in Nonlinear Optimization� pages

���(���� Kluwer Academic Publishers� �����

�WYPB��� F� Wu� H� X� Yang� A� Packard� and G� Becker� Induced L��Norm con�

trol for LPV systems with bounded parameter variation� International

Journal of Robust and Nonlinear Control� vol� �����(���� �����

�YJPH��� J� Yu� A� Jadbabaie� J� Primbs� and Y� Huang� Comparison of nonlinear

control designs for a ducted fan model� In Proceedings of the IFAC World

Congress� Vol� E� pages ��(��� �����


