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Abstract. Complete enumeration of all the sequences to establish global optimality is not feasible as the

search space, for a general job-shop scheduling problem, ΠG has an upper bound of (n!)m. Since the early

fifties a great deal of research attention has been focused on solving ΠG, resulting in a wide variety of

approaches such as Branch and Bound, Simulated Annealing, Tabu Search, etc. However limited success has

been achieved by these methods due to the shear intractability of this generic scheduling problem. Recently,

much effort has been concentrated on using neural networks to solve ΠG as they are capable of adapting to

new environments with little human intervention and can mimic thought processes. Major contributions in

solving ΠG using a Hopfield neural network, as well as applications of back-error propagation to general

scheduling problems are presented. To overcome the deficiencies in these applications a modified back-error

propagation model, a simple yet powerful parallel architecture which can be successfully simulated on a

personal computer, is applied to solve ΠG.
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1. INTRODUCTION

With the emphasis on zero inventory and shorter product life cycles, the need for

efficient and accurate schedules becomes increasingly acute. Scheduling is essentially

concerned with solving a Constraint Optimisation Problem (COP) and in the context of

manufacturing it involves finding a sequential allocation of competing resources that optimises

a particular objective function, f(x), to give f(x)*, subject to certain constraints. Φ is the set of

equality constraints in the problem and Ω is the set of inequality constraints; both sets are

finite. ℜn is the feasible region in n-dimensional space with the membership of sequences of

resources, {xq}, q = 1, 2, ..., m. Each xq is associated with a makespan which has to be smaller

or equal to the known upper bound to qualify for the membership.
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The manufacturing processes required to produce a typical product, Mp, consists of a

set of different factory operations Fo where Fo ⊆ X, X is the set of all n resources in the factory

{x1, x2,..., xn}, xi = {yi1, yi2, ..., yim} and y is the set of m machines in each resource. The aim is

therefore to find the optimum sequence of factory resources for Mp, Fo* which corresponds to

f(x)* such that Mp can be produced in the fastest time possible. For small batches of Mp the

difference between f(x)* and f(x)L*, a suboptimal or local minima, is negligible. However as

the production size of Mp increases the difference ( ) ( )f x f x
L* *− , even if it is one second per

product, may become significant. Therefore finding the optimum sequence is of paramount

importance. Smit (1992) specifies several basic material flow routes by which the products

move in a manufacturing environment, the most common being the flowshop, F; permutation

flowshop P, where passing is not allowed, and the job-shop J or G (the difference is described
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below). In a job-shop Fo is different for each Mp while in a flowshop each product has the same

Fo.

Job-shop scheduling (JSS), as the most general of the classical scheduling problems, has

generated a great deal of research (Johnson 1954, Conway et al. 1967, Blackstone et al. 1982,

Adams et al. 1988, Carlier and Pinson 1989, Applegate and Cook 1991, Dell’Amico and

Trubian 1993, Foo et al. 1995, Yamada and Nakano 1996a, b). In job-shop scheduling the

objective might be to minimise the makespan or maximise machine utilisation, subject to

constraints such as the number of machines, plant capacity, labour availability, etc.

The job-shop scheduling problem, ΠG, consists of a set of m machines {M1, M2, . . . ,

Mm}, and a collection of n jobs {J1, J2, . . . , Jn} to be scheduled, where each job must pass

through each machine once only. Each job has its own processing order and this may bear no

relation to the processing order of any other job. Often technological constraints demand that

each job should be processed through the machines in a particular order (precedence

constraints). This is called a J job-shop (Conway et al. 1967). However for some job-shops

there are no restrictions on the form of technological constraints. They are known as G job-

shops (Conway et al. 1967) or open shops. In addition a class of models known as dag (D) or

mixed shops (Shmoys et al. 1994) arise such that only a partial precedence ordering is given.

Notationally this is summarised as :-

P ⊆ F ⊆ J ⊆ D ⊆ G

It is evident that in ΠG each job consists of m subjobs, called operations, with one

machine for each subjob. Since there are n jobs, each machine must perform n operations, so

there are n! possible sequences on each machine. If these n! sequences are independently

chosen for each machine, then there are (n!)m possible solutions. Thus a problem consisting of

20 jobs and 10 machines (20×10) has 7.2651×10183 possible solutions in principle. However

some of these will not be feasible due to precedence and disjunctive constraints. Nevertheless
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complete enumeration of all the feasible solutions to identify the optimal one is not practical.

Due to this factorial explosion, ΠG falls into a large class of intractable numerical problems

known as NP-Hard (NP stands for non deterministic polynomial). ΠG ∈ H and H ⊆ N ⊆ P,

where H is the set of NP-Hard problems, N is the set of NP problems, both sets are finite and

constrained within the infinite set of numerical problems, P. The computational complexity in

polynomial problems is given as Ο(nm), where n is the size of the problem and m is the degree

of the polynomial while in NP-Hard problems it is Ο(an) (Cook 1971, Garey and Johnson

1979). Conventional approaches are therefore only useful for trivial instances. Heuristic search

techniques can be used to solve larger problems but they often forego guarantees of an optimal

solution for gains in speed. In recent years the technological advancements in hardware and

software have encouraged new application tools such as neural networks to be applied to

combinatorially exploding NP-Hard problems, in particular ΠG (Foo and Takefuji 1988a, b, c;

Zhou et al. 1991; Yih et al. 1991; Potvin et al. 1992; Chang and Nam 1993; Willems and

Rooda 1994; Kim et al. 1995; Sabuncuoglu and Gurgun 1996).

Here we collate and review major works in solving ΠG using neural networks. We

describe the scheduling systems in two major categories: one using the Hopfield method the

other using back-error propagation (BEP). The paper is organised as follows: after introducing

neural networks a review of the main research on Hopfield neural network based scheduling is

given. The paper then goes on to explore the scheduling systems that use a BEP paradigm and

specifically highlights the benefit of using a modified BEP structure in minimising the makespan

for the job-shop problem.

2. NEURAL NETWORKS MODELS APPLIED TO ΠΠG

Numerous approaches have been used to solve ΠG. Two of the most popular

techniques are the Branch and Bound method (Martin 1996) and Simulated Annealing

(Yamada and Nakano 1996a). Other methods include Large Step Optimisation (Lourenço and
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Zwijnenburg 1996), Genetic Local Search (Yamada and Nakano 1996b), the Shifting

Bottleneck Procedure (Alvehus 1997) and Tabu Search (Nowicki and Smutnicki 1996). There

are several other methods that are reviewed in the literature (Vaessens et al. 1996, Blazewicz
�

et al. 1996).

However not many review papers have been published in the field of neural network

based scheduling, which may be explained by the fact that until now only a few scheduling

systems use neural networks. This paper adds to this area of knowledge by providing a

detailed review of neural network based scheduling works and describing a scheduling system

which uses a modified back-error propagation architecture.

The simplicity, along with their capability to perform distributed processing, as well as

their ability to learn and generalise, have made neural networks a popular methodology,

allowing them to be used in many real life applications (Zhang and Huang 1995). Recognising

hand written letters, facial expressions, finding an optimum route for a travelling salesman

problem (TSP) and scheduling a job-shop are just a few examples of problems that neural

networks have successfully solved.

Cheung (1994) describes several neural network architectures such as searching

network (Hopfield net), error correcting network (Multi - Layer Perceptron), probabilistic

network (Simulated Annealing), competing network and self - organising network to solve the

scheduling problem. Figure 1 shows their respective classifications within the field of neural

computing.

Searching networks such as Hopfield nets are autoassociative non-linear networks,

which have inherent dynamics to minimise the system energy function or Lyapunov function.

The energy function is a non increasing vector which represents the activation in the units. The

existence of such a function in association with a simple asynchronous updating rule enables

the network to converge to a stable state of activations, rather than oscillating.
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Changes in state during asynchronous updating always decrease the energy of the

system monotonically, and the system dynamics always act to reduce the energy to a

minimum. In general the energy function has many minima. As the system evolves with time,

its energy decreases to one of the minimum values and maintains this value since no further

energy changes are possible. These points are usually local minima.

Error correcting networks are trained on examples which take the form of a mapping

ƒ: S ⊂ ℜn → ℜm, from some arbitrary bounded subset S of n-dimensional Euclidean space to

m-dimensional Euclidean space. When an activity pattern is applied to the network, the error

correcting rule adjusts the synaptic weights in accordance with the above mapping.

Specifically the actual response of the network is subtracted from the desired target response

to produce the error signal. Weights are adjusted so the actual network response moves closer

to the desired response.

Simulated Annealing is an iterative improvement scheme that has an analogy to

statistical mechanics and combinatorial optimisation. Metropolis et al. (1953) introduced a

simple Monte Carlo algorithm for simulating the transition of a liquid to a solid in such a way

that thermal equilibrium is achieved. Kirkpatrick et. al. (1983) incorporated a time dependent

temperature variant to the Metropolis algorithm, where at each temperature value the solid is

allowed to slowly reach thermal equilibrium, characterised by a probability of the atoms being

in the ground state, given by the Boltzmann distribution. This technique is applied to neurons,

where their output is stochastically determined at each temperature a number of times. Then

the temperature is progressively lowered and the process repeated until thermal equilibrium

(optimisation) is achieved.

Competing and self organising networks are very similar, the only difference is that

competing networks form internal clusters from binary values, while self organisation

networks form clusters from continuous valued inputs.
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In competitive learning the output neurons of the network compete among themselves

to be activated or fired, with the result that only one output neuron, or one neuron per group

(known as the winner-takes-all neuron) is activated at any one time. This neuron inhibits

others in its neighbourhood from firing. A group of M cells within which such inhibitions

occur is called an inhibitory cluster, and it has the property of decoding a distributed pattern

into a one in M firing pattern. This is achieved by lateral inhibitory connections between the

output neurons (Rosenblatt 1958).

In self organising networks the neurons are organised into local neighbourhoods that

act as feature classifiers on the input data. During the self organisation process the cluster unit

whose weight vector matches the input pattern most closely (the proximity is typically

represented by the square of the minimum Euclidean distance) is chosen as the winner.

ΠG using neural networks has mainly been implemented in the first two paradigms, so

the focus is on these two models only.

3. THE APPLICATION OF THE HOPFIELD MODEL TO ΠΠG

The Hopfield Network (Hopfield and Tank 1985) dominates neural network based

scheduling systems (Foo and Takefuji 1988a, b, c; Zhou et al. 1991; Zhang et al. 1991; Chang

and Nam 1993; Willems and Rooda 1994; Satake et al. 1994; Foo et al. 1995; Sabuncuoglu

and Gurgun 1996) and is analogous to an electronic circuit consisting of operational

amplifiers. As a result these models are simulated using such hardware components and as

previously mentioned the dynamics are governed by an energy function, E. When applied to

ΠG, the aim is to minimise the energy function based on the makespan, E subject to various

resource constraints, and if the constraints are violated, a penalty value is produced which

increases the value of E.

Foo and Takefuji (1988a, b, c) are the first to apply a neural network based system to

ΠG. In their earliest work (Foo and Takefuji 1988a, b) they map ΠJ onto a two dimensional
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matrix mn by (mn+1) neurons. To avoid the problems of local convergence a simulated

annealing (SA) process is then applied to the model. However there are several limitations in

this method, the number of jobs must be greater than the number of machines; only small

problems could be solved; there is no guarantee of an optimal solution; the SA method requires

excessive computation. There is a large requirement for the number of neurons, N=mn(mn +

1), and even more interconnections, N2, are required and hence it is concluded that a hardware

implementation is not possible.

Foo and Takefuji (1988c) extend their previous work by formulating the scheduling

problem as a set of integer linear equations, creating an Integer Linear Programming Neural

Network (ILPNN). The energy function is represented by the sum of starting times of all jobs.

This function is to be minimised while making sure the constraints are not violated, ie. all jobs

are processed in a specified order, the right process sequence is followed and no machine

processes two jobs simultaneously. By incorporating such a construction the requirement in

the number of neurons and connections is reduced to ½[mn(n+1)] and m2n3(n+1) respectively.

However there is no guarantee of an optimal solution; only small problems are solved and the

requirement for amplifiers and resistive connections increases as a high degree polynomial.

Zhou et al. (1991) propose a Linear Programming Neural Network (LPNN) to

circumvent some of the shortfalls of the local convergence of the ILPNN used by Foo and

Takefuji (1988c). They avoid the use of a quadratic energy function by implementing a linear

function instead. This prevents the need for a conventional integer linear programming method

which incorporates numerous control variables. By using this method the numbers of neurons

and interconnections are drastically reduced, allowing problems of the size up to 20×20 to be

tackled. However there is still no guarantee of an optimal solution for larger problems, the

number of jobs must be equal to the number of machines and the system malfunctions if it is

not applied to problems for which it is designed for.
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Zhang et al. (1991) propose a similar method using a Hopfield network to that of Foo

and Takefuji (1988c). They classify jobs into various categories of priority, depending on their

importance. The energy equation is formulated in such a way it minimises the sum of the

finishing times of all the jobs. An additional term is introduced in the energy equation that

allows high priority jobs to be processed first, while the constraint equations prevent the early

processing of low priority jobs. However this method is again limited to small problems and

there is a tendency for the system to converge on non-optimal solutions.

Chang and Nam (1993) implement an LPNN which tries to converge on the global

optimum. The system works very much on the same principle as that of Foo and Takefuji

(1988c) except that it avoids the need for integer constraints by introducing slack variables.

However only small problems are solved, a large number of constraints need to be formulated,

numerous interconnections and neurons are required and there is still no guarantee of finding

an optimal solution.

Willems and Rooda (1994) use an ILPNN where the search space is reduced by

precalculation and the creation of minimum starting times, known as thresholds. Fast

convergence to a feasible solution is promoted by the incorporation of feedback connections.

However feedback can interfere with the evolution of an optimal solution. Hardware

implementation of this system is difficult and it deals with small problems only.

Satake et al. (1994) simulate the Hopfield net on a digital framework incorporating a

Boltzmann machine (Hinton et al. 1984), where the threshold values of the network are not

predetermined but revised at each transition. By using this format the system is able to deal

with larger problems than its predecessors. However the revision of each transition

necessitates the need for a secondary energy equation which can produce non-feasible

schedules.

The most recent attempt by Foo et al. (1995) to solve ΠG implements a modified

Hopfield model, avoiding the use of a local optimum converging quadratic energy function by
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the inclusion of non linear “H-amplifiers” into their circuit. This allows the “G-amplifiers” to be

implemented as non-inverting amplifiers which obey a linear relationship. The output of the

“G-amplifier” represents the starting time of each job while the “H-amplifier” output is a zero-

one variable. By using a linear energy function the neurons are able to maintain their simple

processing capabilities. However for ΠG, when m is fixed at 100 and n is varying, the number

of constraints and variables required shows a polynomial growth, with the number of

constraints approaching one million. In addition the number of amplifiers also exhibits a

polynomial growth with more than 1.5 million, while the number of interconnections shows an

exponential requirement with more than 1×1012 for a 100×100 instance. As these numbers are

so astronomical hardware implementation is not feasible, no results are shown for large

problems and also it appears there is no guarantee of finding an optimal solution.

The latest work on neural network based scheduling is by Sabuncuoglu and Gurgun

(1996) who develop a modified 3D Hopfield model for the single machine mean tardiness

problem and the minimum makespan job-shop scheduling problem (cf. Lo and Bavarian 1993).

The approach differs from traditional Hopfield implementations in that an external processor is

augmented to the network. Two operations requiring the same machine are randomly selected

by the processor and swapped. The method of acceptance is analogous to a threshold

acceptance algorithm with a 10 % threshold.

Experiments on 25 benchmark problems indicate that most problems are solved

optimally. Although this is currently the best NN method for ΠG the method is highly problem

dependent as it requires good initial values. Although the external processor acts as a

metastrategy which guides the network, operations are randomly chosen for swapping. Balas

(1969) proves that unless the operations are on the critical path swapping will never improve

the makespan. Glover (1995) states that a random move selection is highly unproductive.

Swapping can also result in non feasible solutions.
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All the neurons need to be connected to the external processor suggesting the need for

excessive numbers of connections which is in the order of mn2. The technique only generates

semi-active schedules therefore not guaranteeing optimality. There is a Ο(mn2) time

requirement to compute the makespan. The termination criterion is inadequate because even if

optimality is achieved the process continues searching and the computational requirement is

very high. Even though hard problems such as LA 21, 27, 29, 38 (Lawrence 1984); ABZ 7, 8,

9 (Adams et al. 1988) are not attempted the authors have solved FT 10 (Fisher and Thompson

1963) which is a well known hard instance.

Until this point we have described systems based on the Hopfield network. However

there are many scheduling systems which incorporate the back-error propagation algorithm.

4. THE APPLICATION OF BEP MODELS TO SCHEDULING PROBLEMS

There has been extensive research on neural computing (Lippmann 1987) and since the

work of Rumelhart et al. (1986) on the multi-layer perceptron (MLP) supervised learning by

the back-error propagation (BEP) algorithm has become the most popular method of training

neural networks. Their implementation removed the major problem Perceptrons had in solving

non-linear problems such as the exclusive-or (XOR), as pointed out by Minsky et al. (1969) and

consequently the BEP paradigm has opened up a wide range of applications for neural

networks (Gernoth and Clark 1995, Goodacre et al. 1995, Jadid and Fairbairn 1995, Pattichis

et al. 1995, Wang and Teng 1995).

Rabelo and Alptekin (1989a, b; 1990a, b) provide one of the earliest studies in neural

scheduling. Although this system is able to get lower tardiness values than six dispatch

heuristics, the neural network does not perform any real scheduling but purely ranks priority

rules and determines coefficients. The actual scheduling is done by the expert system module.

Furthermore the neural models are not the main focus of this system but are only utilised in

two sub modules. In addition the model only deals with small instances and considers merely a

single performance criteria, that of tardiness.
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Potvin et al. (1992) employ an 8-8-1 back-error propagation neural network for a

dynamic vehicle dispatching problem (eg. ambulances, parcel delivery and taxis) where after

40,000 iterations the neural net has the same response as the expert for 89 % of the training

examples and 78 % of the test examples. However as the model is only trained from the

perspective of an expert, no guarantee of optimality is provided and the time to converge even

using a SPARC workstation seems excessive. This method is fitting to be described as a “data

retrieval” (look-up table) system. In a similar “data retrieval” situation the system developed

by Jain (1995) produced a 98 % accuracy and also dealt with more complex problems.

Yih et al. (1991) propose a hybrid semi-Markov neural network method for scheduling

a crane in a circuit board production line. Computational analysis indicates the hybrid system

to be better than a human scheduler as throughput increased by 4 % and the error rate reduced

from 3.90 % to 1.14 %. However the performance of the neural network is not reviewed,

raising doubts about its relative success in training. There is also no discussion of the diversity

of test and training data. The approach considers only a very simple and small problem

5/1/P/Wmax, which is among the most trivial class of problems to schedule and the neural

network is not involved in the optimisation process but is only trained to look up the best

policy.

Sastri and Malave (1991) apply two neural models, a Bayesian Classifier and a BEP

network, to calculate the expected operation cost per period and the optimum control policy.

Results achieved after comparable error convergence show that the Bayesian network has a

99.06 % policy identification accuracy and an overall mean error of 3.32 % in estimating the

average operation cost per period while for the BEP model the corresponding results are

41.67 % and 16.93 % respectively. This suggests that real progress in back error propagation

scheduling might be achieved by incorporating a proven mathematical optimisation model.

Nevertheless the number of neurons required for this problem is large indicated by the fact that

even for a system with 8 control policies and 3 operation cost states 75 neurons are required.



JAIN AND MEERAN JOB-SHOP SCHEDULING USING NEURAL NETWORKS page (13)

Hence for larger and more realistic instances network sizes will become excessive. The

variation in training and test data is minimal which further emphasises the tendency of the

model to be a “retrieval system.” A 42 % accuracy in the BEP model suggests that the network

is looking for generality between inputs and outputs, but is unable to find it.

Cedimoglu (1993) applies a BEP neural network approach to produce better sequences

of jobs to be processed and results show that the neural model generally out performs several

dispatch rules for various criteria. Nevertheless only smaller and simpler problems are

considered; there is no guarantee of an optimal solution; the model acts as a schedule retrieval

system producing a schedule for a given set of input parameters and as a result when new

examples are presented the model struggles; there is no great divergence of training and test

data and it is found that test data also contains training examples.

Keymeulen and De Gerlache (1993) propose a dual neural network for the

rescheduling of an airline crew which is trained from the judgement of an expert. Two

experiments are performed and the mean errors have been found to be ≅ 0.14 and ≅ 0.1.

However the size of the network is not specified and there is doubt about the optimality of the

training data since it is derived from an expert, which suggests that natural bias, human errors

and inconsistencies could have been introduced. For test schedules that are not similar to

training schedules convergence is not achieved, thus suggesting a deficiency in the system’s

capability to deal with generic problems.

Sim et al. (1994) claim that expert systems are not able to provide better results as

they act basically as simple decision tables. A hybrid neural network and expert system (NNSS)

simulation model is proposed to solve a dynamic ΠG and overcome this problem. Sixteen 14-

14-1 BEP neural networks are embedded in an expert system. Each of the sub-networks

correspond to an activation environment. The prevailing environment determined by the expert

system, from ten scheduling factors, dictates which of the 16 networks is initialised. Each

neural network is trained from the scheduling factors to recognise the individual contributions
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of various heuristics in the activation environment subject to the criteria of average tardiness

and percentage of late jobs. Results show the NNSS is able to match the best performance of

each of the various dispatching rules and a composite rule expert system for 10 job lots of

5000 jobs.

However the method can be computationally demanding due to the time required to

train 16 BEP networks and the time to run the training examples; only a small problem, nine

machines, is dealt with; there is no evidence suggesting whether optimal solutions to these two

criteria are obtained; given a set of scheduling factors, the neural network just determines a

normalised value from which the expert system determines whether the job should be

processed next, hence no optimisation is performed by the BEP model and there is no mention

of the divergence of training and test data.

Kim et al. (1995) propose combining the back-error propagation paradigm with the

Apparent Tardiness Cost (ATC) rule (Vepsalainen and Morton 1987). Here 90 samples, each

sample containing 10 data sets, is used for training a 3-5-1 neural network. When the set up

time is considered to be a separate entity then a 4-2-5-2 network is used with the Apparent

Tardiness Cost with set-ups (ATCS) rule (Lee et al. 1992) to schedule the jobs. In this case

2250 samples, each with 10 data sets, are used for training. It is found that the system is able

to successfully deal with problems from the training set as well as out with. Figure 2 gives a

summary of how the above said models incorporate a back error propagation paradigm to

scheduling problems.

Most of the problems that have been tackled by the BEP architecture are much smaller

and simpler than ΠG; excessive numbers of neurons are required and training data is created

from information specified by experts or from databases. Experts generally tend to get near

optimal solutions in most domains. However because of the shear intractability of ΠG experts

can only guess the solution which is anything but optimum. This does not satisfy present day
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operating conditions where waste elimination is a primary concern, which demands, if not

optimum, at least near optimum solutions.

This review so far indicates that Hopfield networks (Hopfield and Tank 1985) require

excessive numbers of neurons and interconnections, hence they can deal with small problems

only and do not guarantee optimal solutions as they are often trapped in local minima. On the

other hand the traditional BEP models (Rumelhart et al. 1986) are generally applied to “easier”

problems; require excessive numbers of neurons and are trained from non optimal data

acquired either from an expert or a standard database. In many of these cases the optimisation

is not performed by the neural network but instead left to an alternative technique.

A modified version of the BEP architecture is suggested to overcome many of the

deficiencies of these two paradigms. Although as the traditional BEP model the modified BEP

architecture also lacks a generalised capability the augmentation of additional properties

allows transcendency of local minima. A novel input / output representation permits the

number of neurons and interconnections to be minimal. The neural network performs the

optimisation itself, thus not relying on alternative methods and the use of optimal training data

ensures that the network is not just trained from mere “guesses”.

5. THE APPLICATION OF A MODIFIED BEP MODEL TO ΠΠG

The modified BEP architecture incorporates the traditional forward and backward

propagation with additional features such as a momentum parameter, η, a jogging parameter,

β, and a learning rate parameter, α. These parameters alter the weight values, W, between

neurons encouraging convergence away from local minima thus greatly improving the chances

of solving ΠG successfully. The learning rate determines the amount of change in the weight

values of the connections and usually reflects the rate of learning of the network. Values that

are very large can lead to instability in the network and unsatisfactory learning, while values

that are too small can lead to excessively slow learning. The momentum rate adds a fraction of

the weight change to the next weight so as to prevent oscillations during learning (Rabelo and
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Alptekin 1990a). This factor makes convergence of the network easier and faster (Lippmann

1987).

The symbols used to describe this algorithm are: t is a pattern, X is the target output, Q

is the actual output, V is the neuron value, A, B and Z are the input, hidden and output layers

respectively, Ψ is the error or difference between the actual and desired value, W is the

weight, ∆W is the change in weight and θ is the bias or threshold.

In addition to the learning rate and momentum parameters, the choice of weights

influences how quickly the network converges and whether it settles on a global or local

optimum of the error function E. In simple terms the ith weight value between neurons in layer

A and layer B is given by W ( )
AB
i

AB
i

AB
iW W= +−1 ∆  where i = 1, 2, ..., n, ∆WAB

i  is the ith weight

change between these adjacent layers. A ∈ R and B ∈ R , R is the set of all the layers in the

network. W AB
i

a b
i

q

L

p

K

w
p q

=
==

∑∑
11

, and ∆W wAB
i

a b
i

q

L

p

K

p q
=

==
∑∑ δ

11

, A = {a1, a2,...,aK} and B = {b1, b2,..., bL},

wa b
i

p q
 is the ith weight value and δwa b

i

p q
 is the ith weight change between the pth neuron in layer

A and the qth neuron in layer B.2 In the traditional BEP model, the weight adjustment of all

neurons between two adjacent layers goes through a process of minimising the error function,

culminating in a successful input - output representation. However, as shown in figure 3, there

is a possibility that the nth iteration weight value can become the same as the ith iteration’s.

The weight values therefore oscillate as they are unable to converge. The error cannot

be further reduced as it is trapped in a local minimum, EL*. To avoid convergence towards EL*

the modified BEP model applies the jogging mechanism to the network.

                                               

2 For completeness W WNET
i

J
i

J

Y Z

=
= −

−

∑
1 2

 where the ith weight value in the whole network (NET) is the sum of the

ith weight value between each layer. J = {1-2, 2-3, ..., Y-Z} the set of all adjacent layers in the network. This

equation also corresponds to ∆Wi
NET.
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Jogging involves a random alteration of the weights to find an alternative path to the

desired output. W j and β represent the jogged weight and randomly initialised jogging factor

respectively. In figure 3, as W ( )
AB
n−1  is converging on EL* the parameter β  is initialised to

encourage the weight values to approach E*, thus W ( )
AB
j

AB
nW= −β 1 .  This allows faster

convergence towards a solution that is more likely to be a global optimum. In addition to

jogging, extra neurons can be added into the hidden layer to encourage faster and improved

convergence.

The likelihood of solving a problem can be greatly improved by finding an appropriate

input representation, therefore the choice of input structure is vital. An input structure has to

be chosen in such a way that the number of inputs grows linearly with the size of the problem.

Robustness is also another important factor, the model must be able to handle raw input /

output data without additional processing. Jain (1995) highlights that if the encoding of the

Travelling Salesman Problem (TSP) is done in the form of intercity distances then ½[n(n-1)]

input neurons are required, however the same information can be represented in coordinate

form needing only 2n neurons. The assumption is that intercity distances are represented by

the straight lines connecting them. Thus the requirement is reduced from a quadratic to a

linear encoding which in a 1,000 city TSP is a reduction from 499,500 neurons to just 2,000

neurons.

A balance has to be made in such a way that the problem can be concisely encoded, yet

the job sequence on machines should not be lost. The proposal here is to use a 2n input

encoding for smaller problems which corresponds to the processing times of the jobs and the

precedence order of machines. Due to their reduced dimensionality it is possible for all

processing times required by Ji to be represented by a single input to neuron i where neuron

(i+1) denotes the precedence order of Ji. However for larger problems so as to maintain

accurate problem representation, as all the processing times of a single job cannot be grouped
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together, a 2mn encoding has to be applied where the inputs to the first n neurons represent

the processing times of J1 on all the machines while the inputs to the next n neurons show the

precedence order of machines required to process J1. This format continues for all the jobs and

this data can be taken directly from the shop floor.

Another critical decision is the choice of output structure. The network’s response

should represent the optimum schedule. For smaller problems n outputs are used where each

neuron corresponds to the job sequence on a machine. However for larger problems to

maintain clarity mn outputs are adopted in order to represent job sequences explicitly for all

the m machines, each machine has n outputs indicating the sequence of the jobs to be

processed on that machine. The outputs from both of these formats can be implemented

directly onto the shop floor.

The final decision concerns the number of hidden layers and hidden units. Pomerleau

(1993) conducted experiments using either 0, 1 or 2 hidden layers3 with between 0 and 70

hidden neurons in partially, as well as fully, connected structures. He concluded that there

should be only one fully connected hidden layer containing a minimum number of neurons.

The networks with additional hidden layers require significantly longer training times to reach

the same level of performance. Furthermore networks with more than the minimum number of

hidden neurons take longer to train because of the greater size of the network.

5.1 A scheduling system based on the modified BEP architecture

A system is described here which successfully schedules various sizes of ΠG ranging from

4×3 to 30×10. To provide a full understanding of the method used a smaller problem

consisting of 6 jobs and 5 machines is described in detail and the results from a 30×10 problem

are enumerated.

                                               
3 No more than two hidden layers are chosen because Kolmogorov’s theorem (Kolmogorov 1957) proves any

problem can be represented by two hidden layers.
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6×5 PROBLEM

The notation used in this paper to describe each instance will be that of Conway et al.

(1967) where ΠG is represented by A / B / C / D. A is the number of jobs, B is the number of

machines, C  is the flow pattern within the machine shop and D is the performance measure by

which the schedule is evaluated. Hence the problem here is notationally 6 / 5 / J / Cmax where

the performance measure Cmax aims to minimise the makespan.

Although only a 6×5 instance is used in this example because of the exploding nature

of the problem there are more than 1.9 x 1014 different possible schedules in comparison to

only 14,000 in a 4×3 example. However industrial schedulers deal with thousands of parts and

hundreds of machines which emphasise the difficulties they face. Table 1 specifies a

6 / 5 / J / Cmax problem and a graphical solution in the form of a Gantt chart is given in table 2,

where \ indicates that the machine is idle, waiting to process a job. The SPT (Shortest

Processing Time) rule is used to schedule the jobs (Smith 1956) and the FIFS (First In First

Served) rule (Rowe and Jackson 1956) is the tie breaker.

A two layer neural network, is used consisting of 12 inputs to represent processing

times, and the process sequences of six jobs, and five outputs which encapsulate the sequences

of jobs each machine needs to process. The process of learning in this network can be likened

to a matrix transformation which maps a process sequence matrix into a job sequence matrix,

as shown in figure 4.

The task here is to find the concise form of the data which caters for the reduced

number of inputs and outputs, whilst maintaining the transparency, so that the neural net can

find a plausible mapping. It should be possible to feed the processing times, in a raw form, into

the network. However one needs to find a simple way of encoding the process sequence. Here

the concept of branching trees, (figure 5), is used to relate every sequence to one of the

branches and then each branch is assigned a number in ascending order.
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Table 3 shows the training data obtained from the problem which is specified in

table 1. In table 3 ‘13242’ corresponds to the processing times of job 1 on the various

machines (cf. table 1) while the second input ‘1’ indicates the precedence order for this job.

Based on the branching tree concept this second input ‘1’ represents the precedence order of

machines: ABCDE, ‘2’ is equivalent to the precedence order ABCED, while ‘120’ (which is

m!) denotes the precedence order EDCBA. Such an encoding requires only 2n inputs.

Each output corresponds to the job sequence on every machine. Applying the

branching tree approach the first output of ‘74’ in table 3 is equivalent to a job sequence of J1,

J5, J2, J3, J6, J4 which corresponds to row one of table 2. This scheme limits the number of

outputs required to only n. When the example is used for testing, the output obtained is listed

in table 4, to an accuracy of three decimal places. It can also be seen that the test output values

are approaching the target values (compare table 4 with table 3). It is recognised that it may be

impossible to get a perfect match. Table 5 denotes the training parameters used and table 6

shows the network parameters achieved from training.

The mean µ, and the standard deviation σ, of the optimum sequence of jobs produced

by the neural network are compared with the target outputs used in training (table 7). This

comparison is best achieved by two types of statistical tests known as a t-test and a F-test

(Berenson et al. 1988). Both tests require the formulation of a set of hypothesis, H0 and H1. In

the t-test, H0 is accepted if no significant difference between the population means exists

otherwise hypothesis H1 is accepted. For H0 to be accepted the t value calculated must lie

within the specified hypothesis limits. The F-test is very similar to the t-test, but is a measure

of the difference between population variances. Hypothesis H0 is accepted when the F value

calculated lies within the hypothesis limits, thus signifying the similarity between the two

populations, otherwise it is rejected. The limits for both the t-test and F-test are set according

to the size of the problem and can be found from statistical tables.
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Learning is governed by a set of parameters (table 5). An upper limit, ε, is placed on

the number of iterations. Once this limit is reached, training is stopped. Training can also be

stopped once an acceptable difference, ϖ, between the neural network and target outputs, is

achieved.

However learning cannot always be achieved to the desired ϖ value. If this is the case,

then the modified BEP model is able to incorporate additional functions which improve

learning. κ is the value at which the user specified parameters, λ, ν, ρ are triggered. If there is

no decrease in ϖ after λ iterations then the weights are randomly altered. If after ν such

alterations no improvement in ϖ is achieved then a neuron is inserted into the hidden layer.

Once ρ neurons are inserted into the hidden layer, training is stopped.

From table 6 one could see that the network has undergone 25 iterations on 1920 good

examples to achieve the required ϖ value. The training tolerance is a measure of the error

when the process is stopped. Since learning is successful there are no additional neurons

inserted into the network, so the network size stays the same. The training data for the 6×5

instances are created by generating a number of problem instances of this size and solving

them by a simple dispatch rule. Hence the outputs are not optimal. Table 7 shows the means

and variances of the results of the neural network from the simple dispatch rule solutions. As

hypothesis H0 is accepted for both the t-test and F-test, it indicates that training is successful as

the outputs from the neural network have the same statistical parameters as that of the

dispatch rule outputs.

30×10 PROBLEM

As the computational effort required for large instances of ΠG is excessive an

exhaustive search method becomes impractical for the creation of training examples. Therefore

benchmark instances proposed in the ΠG literature (Lawrence 1984, Adams et al. 1988,

Taillard 1993) have been used as training data.
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A two layer network is again used, with 300 nodes to input the processing times

arising from 10 processes on every job and 300 input nodes to feed the precedence order for

each job. While the 300 output nodes provide the optimum sequence of jobs to be processed

by each machine. Here again it can be considered as a transformation which converts a matrix

of process sequences for every job into a matrix of job sequences for every machine. The

hidden layer has been arbitrarily chosen (Pomerleau 1993). As mentioned earlier for these

30×10 instances optimum training data is taken from the available literature. Table 5 describes

the parameters used for training, with the results of training given in table 6, while table 7

provides a statistical analysis of the results of the neural network from the optimum solutions.

One can conclude that training is successful, since the network is able to converge to a training

tolerance of 0.020, there are no bad results and hypothesis H0 is accepted for both tests.

5.2 Analysis of the modified BEP network

As indicated earlier because of the limited number of BEP based models for ΠG,

providing a comparative study on the performance of the system is difficult. Vaessens et al.

(1996) note that the application of neural networks to ΠG, mainly from the Hopfield domain, is

at an initial stage and the reported results are minimal until now. Consequently neural network

based scheduling systems are usually compared with traditional heuristics (Cherkassky and

Zhou 1992, Smith et al. 1996). Cherkassky and Zhou (1992) compare the NN model of  Zhou

et al. (1991) with three priority dispatch rules: MWR, LWR and SPT on four problems taken

from the ΠG literature and another 100 problems ranging from n = 4 to 10 and m = 4 to 10

which are randomly generated. Two performance measures are used, makespan and mean flow

time minimisation. Results show that the neural network performs better in both criteria for all

104 problems except on one instance. However priority dispatch rules are known to give

extremely poor solutions especially as the dimensionality increases.
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Currently the modified BEP neural network system presented earlier can handle

problems of size up to 30×10. Table 8 provides a comparative analysis of this method, MBEP,

with three priority dispatch rules, SPT -  shortest processing time; MWR - most work remaining

and FCFS - first come first served, and the Shifting Bottleneck Procedure (SBP) of Adams et al.

(1988). SBP is specifically chosen for the comparison as this was the first technique to solve

these three large problems optimally. The results of these three simple dispatch rules have been

performed on an IBM RS6000 by the authors. The MBEP system, which is run on a PC 486

with a clock speed of 33 MHz, gives comparable times to the priority dispatch rules while the

makespans achieved are much shorter. When compared with SBP the makespans achieved are

similar however the modified BEP model gets to the solution faster than SBP does. The

superiority of this system and the inconsistent performance of priority dispatch rules is clearly

brought out in table 9 where the total and average Relative Error and Computer Independent

CPU times are given. The CI-CPU times are based on comparisons of Dongarra (1998) as

interpreted by Vaessens et al. (1996).

6. DISCUSSIONS

6.1 Limitations in the various neural models presented

HOPFIELD

For complex problems such as ΠG the Hopfield model is unable to converge to the

global optimum as it has a tendency to become trapped within local minima solutions, hence

there is no guarantee of achieving good solutions. Many of these local solutions do not satisfy

the specified constraints and hence produce sequences that violate precedence relationships or

result in corresponding activities not being sequenced at all. The Hopfield based systems have

difficulty in trying to solve large problems and the formulation of a quadratic energy function

exhibits poor scaling properties as the number of amplifiers and resistive interconnections

required increase exponentially and are excessive even for small problems. Kobayashi and

Nohaka (1990) have shown that their knowledge based system provides better overall
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schedules than the Hopfield network where the objective function is to minimise the daily

resource usage.

In addition, the energy function relies on the assumption of symmetric connection

weights but there is no evidence that such a structure exists in any biological memory system.

This is commonly recognised as the main drawback of Hopfield auto-associative memory

(Zhuang et al. 1996)4. The solutions obtained depend on the initial parameter values selected,

where for each individual instance these values need to be carefully chosen, thus resulting in a

technique which is highly dependent on the particular problem instance. The simulation of the

differential equation has a complexity of Ο(n3) making it computationally expensive to obtain

solutions for larger instances. Wilson and Pawley (1988); DARPA Study (1988); Aiyer et al.

(1990) and Kunz (1991) highlight considerable discrepancies in this model and the Hopfield

paradigm is considered to be inferior to known conventional heuristic algorithms for

combinatorial optimisation, in terms of computational time and the quality of solution (Zhou et

al. 1991).

THE BEP NEURAL MODEL

Although the BEP model is able to perform classification effectively it exhibits limited

success in dealing with optimisation problems because of the inherent lack of generic patterns

between inputs and outputs in optimisation problems. As a result when faced with scheduling

problems the BEP architecture is insufficient. This is clearly observed from the earlier systems

developed (Sastri and Malave 1991, Yih et al. 1991, Potvin et al. 1992, Keymeulen and De

Gerlache 1993, Kim et al. 1995) which apparently have an error function such as makespan to

be minimised, however the BEP architecture is unable to optimise the objective criteria. Hence

alternative systems are developed which incorporate Operations Research techniques where

                                               
4 These authors implement the concept of supporting functions, to replace the traditional energy function

notion of Hopfield, and hence avoid the assumption of symmetric connection weights, making models more

biologically plausible.
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the neural network does not perform the optimisation but gives or takes values to or from

other optimisation methods. The problems tackled by these systems are much smaller and

simpler than ΠG; generic cases could not be solved and training data is created from the advice

of experts or from databases which is insufficient in the context of ΠG.

MODIFIED BEP NEURAL MODEL

The limitation to 30×10 instances results from the restriction on the number of neurons

and connections that can be used in the system. It is important to note that the times presented

in table 8 are those once training is achieved where for some problems nearly 24 hours of

learning is required to achieve satisfactory maximum output error values. To achieve these

global minimum solutions optimal training data is required hence this method is only as good

as the other methods available. Therefore this approach would not be able to solve open

problems.

The system’s primary deficiency is its limitation in dealing with examples out with the

training set. Hence test examples are successful, subject to the condition they do not vary by

more than 20 % from any training set example and they result in the same optimum makespan.

In order to achieve this during training it is the processing times of non critical operations

which are varied, by less than 20 %. Based on the work of Balas (1969), Matsuo et al. (1988)

and Van Laarhooven et al. (1992) prove varying these operations will not affect the critical

path and thus the overall makespan will remain the same. The essential thing is to ensure that

by varying the processing time of a non critical operation, it does not become critical. To do

this the slack (the difference between the current and latest finish time) of each operation is

determined and the operations whose slack is greater than a 20 % change in their processing

times are perturbed. Note such a perturbation has analogies to the problem space based search

techniques of Storer et al. (1992, 1995).

However altering the problem variables slightly too much will result in the need to find

alternative optimal training data and the requirement to redo the training process,
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consummating in another lengthy learning phase. Therefore despite some success major

weaknesses are clearly apparent in the modified BEP model consequently indicators point to

using multiple tools which combine these approaches with an additional algorithm to solve the

combinatorially exploding ΠG.

6.2 Future directions

The lack of real success in the modified BEP strategy encourages the consideration of

hybrid systems where neural networks should be integrated into a practical engineering

approach (Haykin 1994). Glover and Laguna (1993) also indicate that hybrids are emerging to

bridge differences in their component technologies. The most fruitful solutions lie in the

creation of hybrid methods that amalgamate neural networks with other approaches to solve

ΠG.

The justification is that the incorporation of different methodologies balances out the

deficiencies in individual approaches producing a more complete system to deal with the

problem. The advantage of using hybrid models (Fu 1996) are :

• Systems which combine disparate technologies

• Systems which capitalise on the synergy of multiple technologies

• Systems which implement multiple levels or facets of activities from different perspectives

Metastrategies such as simulated annealing (SA); tabu search (TS); genetic algorithms

(GAs) guide a local heuristic, embedded within their structure, through the search domain and

hence are able to provide a superior method (cf. results of Vaessens et al. 1996). Therefore

this creates a potential application where NNs can use their inherent parallel capabilities to

search the solution space. As the NN normally converges to a local minima the metastrategy

surmounts this solution by taking it away from the local minimum and then the NN is reapplied.

Hence application of such methods to the Hopfield as well as BEP paradigms should avoid

convergence to poor minima. Glover et al. (1995) discuss the tremendous scope available in

combining TS to form hybrids models.
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7. CONCLUSIONS

The extensive review highlights the fact that the traditional BEP model has the

drawback of lacking a generalised learning capability to map inputs and outputs for intractable

NP-Hard problems, while the Hopfield model requires large numbers of neurons and

interconnections. A modified BEP structure is suggested as it is able to deal with much larger

and more complex problems than any previous method. If training is unsuccessful additional

user defined parameters are incorporated to take the error function from a local into a global

optimum. The model is trained on optimum data rather than relying on the guesses of experts.

The robustness of the model allows data to be taken directly to and from the shop-floor

without requiring additional filtering and modifications. Schedules can be retrieved very

quickly for a known job-shop and the modified approach employs a novel input-output

structure to encode large problems in such a way that the requirement of neurons grows

linearly with problem size.

However test examples are successful only when they do not vary by more than 20 %

from any training example. Although this requirement strikes at the heart of the generalisation

capability of neural networks it should be noted that this is one of the first systems that has

used a modified BEP model to solve ΠG using input-output mappings. No special effort is made

to define a specific error function to minimise any parameters which are important in the

scheduling context. On the other hand, a simple mapping of the input - output is made which,

as expected, does not solve universal scheduling problems. Consequently to achieve a more

generic capability we propose the formulation of hybrid technologies that combine the neural

network’s parallel processing proficiency to quickly locate local optima with a metastrategy

such as tabu search to transcend poor minima.
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Job Machine Sequence and (Processing Times)
1 A(1), B(3), C(2), D(4), E(2)
2 B(3), C(1), A(4), D(2), E(2)
3 E(4), D(3), A(1), C(2), B(1)
4 B(2), E(4), C(3), D(1), A(3)
5 D(5), A(2), E(1), B(3), C(4)
6 C(1), E(4), B(2), A(5), D(1)

Table 1.  A 6×5 problem

TIME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A 1 \ \ \ \ 5 5 2 2 2 2 3 6 6 6 6 6 \ 4 4 4
B 4 4 2 2 2 1 1 1 6 6 5 5 \ 3 \ \ \ \ \ \ \
C 6 \ \ \ \ 2 \ \ 1 1 \ \ 3 3 4 4 4 5 5 5 5
D 5 5 5 5 5 3 3 3 \ \ 1 1 1 1 \ 2 2 4 6 \ \
E 3 3 3 3 6 6 6 6 5 4 4 4 4 2 2 1 1 \ \ \ \

Table 2.  Solution to the 6×5 problem on a Gantt chart using the SPT rule and FIFS rule

Example Number 1
Input 13242 1 31422 32 43121 116

24313 46 52134 77 14251 69
Output 74 390 625 529 360

Table 3. Training data for the 6×5 problem

 Example Number 1
Output 75.773 393.925 624.335

529.703 366.396

Table 4. Outputs learnt by the neural network for the 6×5 problem

Problem Description
Training Parameters 6×5 problem 30×10 problem
Maximum Training Runs (ε) 999999 999999
Momentum Rate of Learning (η) 1.000 1.000
Learning Rate (α) 0.700 0.700
Maximum Output Error (ϖ) 0.050 0.007
Jog Coefficient (κ) 0.250 0.250
Iterations per jog action (λ) 50 50
Number of jogs before insertion (ν) 10 10
Maximum neurons to be inserted (ρ) 100 100

Table 5. Training parameters

Problem Description
Network Parameters 6×5 problem 30×10 problem
Iteration Number 25 109
Number of Good Results 1920 75
Number of Bad Results 0 0
Training Tolerance 0.050 0.020
Network Size at the Start 12-4-5 600-16-300
Network Size at the Finish 12-4-5 600-16-300

Table 6. Network parameters once training is successfully completed
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6×5  problem 30×10 problem
Target
Output

Neural Network
Output

Target
Output

Neural Network
Output

µ 363.2000 364.0200 µ 4.5000 4.6281
σ 186.7377 186.4305 σ 2.8723 2.8856

Value
calculated

Hypothesis
Limits

Hypothesis
Accepted

Value
calculated

Hypothesis
Limits

Hypothesis
Accepted

t-Test
Values

-1.2128 ± 2.8073 H0 t-Test
Values

-2.4038 ± 2.5758 H0

F-Test
Values

1.1105 × 10-4 0 to 7.88 H0 F-Test
Values

1.4757 × 10-1 0 to 6.63 H0

Table 7. Statistical comparison

LA– Lawrence (1984) ABZ - Adams, Balas and Zawack (1988)
Makespan Achieved CPU Time (secs)

Instance Optimum SPT MWR FCFS ABZ’88 MBEP SPT MWR FCFS ABZ’88 MBEP
LA 31 1784 2284 1976 1875 1784 1784 0.01 0.01 0.01 38.3 0.01
LA 32 1850 2438 1901 2007 1850 1850 0.01 0.01 0.01 29.1 0.01
LA 33 1719 2314 1902 1841 1719 1719 0.01 0.01 0.01 25.6 0.01

0SPT/MWR/FCFS − IBM RS6000 ABZ’88 − VAX 780/11 MBEP – PC 486 (33 Mhz)

Table 8. Makespan and CPU times for the 30×10 instances LA 31, 32, 33

Relative Error (%) CI−CPU Time (secs)
Instance SPT MWR FCFS ABZ’88 MBEP SPT MWR FCFS ABZ’88 MBEP
LA 31 28.03 10.76 5.10 0.00 0.00 0.19 0.19 0.19 4.596 0.009
LA 32 31.78 2.76 8.49 0.00 0.00 0.19 0.19 0.19 3.492 0.009
LA 33 34.61 10.65 7.10 0.00 0.00 0.19 0.19 0.19 3.072 0.009

∑ 94.42 24.16 20.68 0.00 0.00 0.57 0.57 0.57 11.16 0.027
µ 31.47 8.05 6.89 0.00 0.00 0.19 0.19 0.19 3.72 0.009

TF CI−CPU = TF × CPU 19 19 19 0.12 0.94
Table 9. MRE and CI-CPU times for LA 31, 32, 33

∑ = sum; µ = mean; TF = Transformation Factor
Relative Error = (UB - Optimum) / (Optimum)
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Multi-Layer Perceptron

Auto-Associative Memories

Fixed Weight - Recurrent Networks

Classification and Clustering Models

Supervised Training

Supervised Training

Unsupervised Training

Unsupervised Training

Error Correcting networks
eg. Backpropagation

eg. Hopfield
Searching networks

eg. Simulated Annealing
Probabilistic network

Self - Organising or
Competing networks

 Figure 1. Classification of common neural network architectures
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Figure 2. Back Error Propagation models in scheduling
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Figure 3. Weight convergence to a local minima
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Figure 4. Conversion of process sequences to job sequences: A matrix representation
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