
1

SCHEDULING OF MANUFACTURING SYSTEMS

USING THE LAGRANGIAN RELAXATION TECHNIQUE1

Peter B. Luh and Debra J. Hoitomt2

ABSTRACT

Scheduling is one of the most basic but the most difficult problems encountered in the
manufacturing industry. Generally, some degree of time-consuming and impractical
enumeration is required to obtain optimal solutions. Industry has thus relied on a combination
of heuristics and simulation to solve the problem, resulting in unreliable and often infeasible
schedules. Yet, there is a great need for an improvement in scheduling operations in complex
and turbulent manufacturing environments. The logical strategy is to find scheduling
methods which consistently generate good schedules efficiently. However, it is often difficult
to measure the quality of a schedule without knowing the optimum.

In this paper, the practical scheduling of three manufacturing environments are examined
in the increasing order of complexity. The first problem considers scheduling single-
operation jobs on parallel, identical machines; the second one is concerned with scheduling
multiple-operation jobs with simple fork/join precedence constraints on parallel, identical
machines; and lastly, the job shop scheduling problem is considered, where multiple-
operation jobs with general precedence constraints are to be scheduled on multiple machine
types.

The Lagrangian relaxation technique is used to decompose each problem into job-level or
operation-level subproblems, which are much easier to solve than the original problem and
have intuitive appeals. This technique then results in algorithms which generate near-optimal
schedules efficiently, while giving a lower bound on the optimal cost. In addition, the
Lagrange multipliers from the previous schedule can be used to initialize the algorithms in
the day-to-day scheduling operations, further reducing the computation time. All algorithms
are demonstrated with examples using actual factory data. The successful application of the

1 This research was supported in part by the Department of Higher Education, State of Connecticut and
Pratt & Whitney, East Hartford, CT, under the Cooperative High Technology Research and Development
Grant Program, and by the National Science Foundation under Grant ECS-8717167. The authors would like
to thank Mr. Scott Bailey, Mr. Curtis Cook and Mr. Jack Gibbs of Pratt & Whitney for their invaluable
suggestions and support. An earlier version of this work has been presented as a plenary paper at the 1991
IFAC Workshop on Discrete Event System Theory and Applications in Manufacturing and Social
Phenomena, Shenyang, P. R. China.

2 Peter B. Luh is with the Department of Electrical & Systems Engineering, University of Connecticut,
Storrs, CT, 06269-3157, and Debra J. Hoitomt is with Pratt & Whitney, East Hartford, CT, 06108.

2

Lagrangian relaxation technique to solve these real-world problems demonstrates the
advantages of the technique over existing scheduling methods.

3

1. INTRODUCTION

Scheduling is one of the most important planning and operation issues in manufacturing,
and its resolution can result in significant production cost savings. For example, IBM-Japan
recently announced the development of a new scheduling system which is estimated to save a
major steel company over a million dollars a year (Numao and Morishita, 1989). Despite
specialized successful instances, the consistent generation of effective schedules remains a
persistent problem for most manufacturing systems. As a result, lead times and work-in-
process inventories are often excessive, machine utilization low, and product completion
dates cannot be accurately predicted or controlled. It is not uncommon to see high level
management devoting much time and effort tracking the status of high priority jobs on the
shop floor (Ashton and Cook, 1989).

Given the logistical and economic importance of scheduling problems, most of the earlier
efforts centered on obtaining optimal schedules. Two prominent optimization methods are
the branch and bound method (Fisher, 1973) and dynamic programming (e.g., French, 1982).
Unfortunately, it has been proved that most scheduling problems of interest belong to the
class of NP hard combinatorial problems, and the computational requirements for obtaining
an optimal solution grow exponentially as the problem size (e.g., number of jobs and/or
number of machines) increases (Lenstra, et al., 1977). These pure optimization methods are
therefore impractical for industrial applications. As a result, materials planning systems (e.g.,
"Materials Requirements Planning" (MRP)) and simulation are often used for the high level
planning purpose, while shop floor control systems determine schedules at the local level by
using simple dispatching rules (Graves, 1981). In this attempt to decompose a scheduling
problem, it is generally difficult for the high level planning system to provide the
coordination needed to prevent local scheduling conflicts. Consequently the overall schedule
is often infeasible. In addition, qualities of resulting schedules are difficult to assess. Recent
research in heuristics has focused on the development of worst case bounds, i.e., what is the
worst schedule a heuristic can generate, and how far is it from an optimum one. These
bounds are generally difficult to obtain and are often far from the optimum. In using the
Nowicki & Smutnicki, 1989 heuristic, for example, schedules may be more than 100% worse
than optimal.

Beyond generating a schedule, there are a few other issues that a good scheduler must
consider. In a manufacturing environment, dynamic changes are inevitable elements of the
daily life. New jobs arrive, machines break down and even the process plans of some jobs
may change. What is the impact of these changes on a schedule? How should a schedule be
reconfigured to accommodate these changes? Should schedules be regenerated from scratch
or simply respond locally to changes? Can information from the previous schedule be used in
regenerating a schedule to reduce computation time? These are crucial issues in the day to
day operations of any industrial scheduling system, but have neither been satisfactorily
address in the literature nor realized in practice.

Manufacturing scheduling can be viewed as a decision problem with discrete decision
variables, optimizing an objective function subject to relevant constraints. Since the pursuit
of "pure" optimal scheduling methods is impractical, the challenges faced by the research
community are to (1) develop efficient solution methodologies that can generate near-
optimal solutions with measurable performance; (2) perform "what if" analysis to examine

4

the impact of dynamic changes; and (3) develop effective methods for schedule
reconfiguration to accommodate these changes.

Lagrangian relaxation is a mathematical technique for solving constrained optimization
problems (Nemhauser & Wolsey, 1988), and has recently emerged as a powerful method for
solving complex scheduling problems to meet the above mentioned challenges. It is assumed
that on time delivery is the objective function to be optimized (see problem formulation in
subsection 2.1 and also comments in Section 5). By relaxing complicating "coupling"
constraints, e.g., machine capacity constraints, using Lagrange multipliers, the method
decomposes a problem into a number of smaller subproblems which are much easier to solve.
Intuitively, the "hard" capacity constraints are converted into "soft" prices, with Lagrange
multipliers acting as prices to regulate the use of machines. At the low level, the scheduling
of a job can be easily determined by balancing job tardiness penalty against machine
utilization costs, and this process is independent of the scheduling of other jobs. After all the
low-level subproblems have been solved, the multipliers are adjusted at the high level as in a
market economy so that capacity constraints are gradually satisfied over the iterations. By
synergistically combining Lagrangian relaxation with heuristics, this method can generate
feasible schedules efficiently for practical sized problems (within a few seconds of CPU time
for simple manufacturing environments and a few minutes of CPU time for more complex
environments, see examples in Sections 2, 3 and 4). Since the cost of the relaxed problem is a
lower bound on the optimal cost, the quality of resulting schedules can be quantitatively
evaluated. The schedules we obtained are near-optimal, mostly within a few percent of their
respective lower bounds. Furthermore, Lagrange multipliers have the meaning of marginal
costs (i.e., the increase in the objective function caused by a breakdown of a machine), and
can be used to answer a wide range of "what if" questions. A schedule can also be efficiently
reconfigured to accommodate dynamic changes by using multipliers from the previous
schedule, further reducing computation time. This is because the status of a shop usually do
not change drastically from one day to the next, therefore the prices should not differ to much
either. Lagrangian relaxation is thus a powerful scheduling methodology for today’s
complicated and dynamic manufacturing environments.

This paper presents a unified framework and intuitive explanation of the Lagrangian
relaxation approach for several generic manufacturing environments. These problems build in
complexity in a step-by-step fashion. The first problem presented in Section 2 considers the
scheduling of single operation jobs on parallel, identical machines. It models the scheduling
of a bottleneck work center with a limited number of machines. The machine capacity
constraints are relaxed by using a set of Lagrangian multipliers. The method is extended in
Section 3 where each job may have several operations to be performed on this bottleneck
work center, and these operations are separated by timeouts (representing non-bottleneck
operations). The problem is the scheduling of multiple-operation jobs on parallel, identical
machines with simple fork/join type precedence constraints and timeouts. The precedence
constraints for this problem are handled by enumeration. In Section 4, the job shop
scheduling problem is considered with multiple machine types, general precedence
constraints and simple routing decisions. This problem is solved by relaxing capacity
constraints for each machine type using a set of Lagrange multipliers, and also relaxing
precedence constraints using another set of Lagrange multipliers. Examples using actual
factory data are provided for all the three problems in their respective sections. Concluding
remarks are then given in Section 5. Although individual results on the three problems have

5

been reported in the literature, this step-by-step modeling, resolution, intuitive explanation
and comments shed additional insight on the important, complex and dynamic manufacturing
scheduling problems.

2. SCHEDULING SINGLE-OPERATION JOBS ON PARALLEL, IDENTICAL
MACHINES

In this section, the non-preemptive scheduling of independent jobs with due dates on
parallel, identical machines is considered3. Each job can be completed in a single operation,
and is associated with a specified period of processing time, a due date and a measure of
importance (weight). The objective is to optimize the overall on time delivery performance.
This problem models the scheduling of a bottleneck work center with a limited number of
machines.

2.1 Problem Formulation

An integer programming formulation is a common way to represent a scheduling
problem. The quantity to be minimized J is the sum of a weight wi times the square of the
tardiness Ti for each job, where the subscript i refers to the ith job.

(2.1)
J ≡ wi

i
∑ Ti

2

The tardiness refers to the time past the due date di, and is defined as max[0, ci - di] with ci
being the completion time of job i. This tardiness objective function accounts for the values
of jobs, the importance of meeting due dates, and the fact that a job becomes more critical
with each time unit after passing its due date.

Machine capacity constraints state that the total number of jobs being processed (active)
at a particular time k must be less than or equal to the number of machines available at that
time Mk. Let the integer variable δik ∈ [0,1] equal one if job i is active at time k, and zero
otherwise. Then the capacity constraint can be expressed for each time k:

(2.2)
δ ik

i
∑ ≤ M k,

k = 1,...,K,

where K is the time horizon under consideration. Without loss of generality, K is assumed to
be long enough to complete all the jobs.

The processing time requirement for job i states that the elapsed difference between the
beginning time bi and the completion time ci should be the processing time required ti, i.e.,

(2.3) ci - bi +1 = ti, i = 1,...,I,

3 See also Luh, et al., 1990.

6

where I is the total number of jobs.

In the above formulation, the time horizon K, the number of jobs I, the weights {wi},
processing time requirements {ti} and due dates {di} of jobs and machine availability {Mk}
are assumed given. The scheduling problem is to select job beginning times {bi} so as to
minimize the weighted quadratic tardiness J subject to machine capacity constraints and
processing time requirements. Once beginning times are selected, completion times {ci},
tardiness {Ti} and number of active jobs at a given time can be easily derived. Note that the
processing time requirements relate to individual jobs, and the objective function is also job-
wise additive. Only capacity constraints couple across jobs and make the problem difficult.

2.2 Solution Methodology

Lagrangian relaxation is employed to relax the coupling capacity constraints (2.2) to
obtain a set of decomposed subproblems. After the decomposition framework is derived,
several steps to obtain a near-optimal solution will be presented: solving subproblems,
updating multipliers, and constructing a feasible schedule.

The capacity constraint at time k is relaxed by using the Lagrange multiplier πk to form
the relaxed problem:

(2.4)
min
{b i}

{ wi
i

∑ Ti
2 + π k

k
∑ (δ ik

i
∑ − M k) };

subject to the processing time requirements (2.3). Then the dual problem is

(2.5)
max

π ≥0
 L, with L ≡ { − πk

k
∑ M k + min

{bi}
{wi

i
∑ Ti

2 + π k
k

∑ δik} };

subject to the processing time requirements (2.3). In the above, πk is a non-negative real

variable, and π ≡ [π1, π2, .., πK]T. This then leads to the following decomposed low-level
subproblems, one for each job (given π):

(2.6)
min

1≤ bi ≤ (K-t i +1)
 Li , with L i ≡{ wiTi

2 + πk
k =b i

bi + t i −1

∑ },

where the processing time requirement (2.3) has been incorporated into (2.6) by using the
fact that δik equals one when the job is active and zero otherwise. Equation (2.6) represents a
decomposed scheduling subproblem for job i, and can be interpreted from a pricing
perspective. The Lagrange multiplier πk represents the price for utilizing a machine at time k.

The cost Li is thus balanced between the job tardiness penalty wiTi
2

 and the cost for utilizing

7

a machine
πk

k =bi

b i + ti −1

∑
. To solve (2.6) for a given set of prices (multipliers), the cost Li is

computed for each possible value of bi, and the optimal bi
* is the beginning time yielding the

lowest value of these Li’s. After all the job-level subproblems have been solved, the prices are
adjusted at the high level as in a market economy so that capacity constraints are gradually
satisfied over the iterations. The computational complexity for solving a subproblem is linear
in K, since at most K evaluations of Li is needed to determine bi

*. This is contrast to the NP-
hardness of the original problem. Also if job i arrives at time ai (> 0), this earliest start date
constraint can be easily accommodated by requiring bi to lie between ai and K- ti +1 (rather
than between 1 to K- ti +1).

Let Li
* denote the optimal cost of (2.6), then the high-level dual problem (2.5) can be

rewritten as

(2.7)
max

π ≥0
 L, with L ≡ { − πk

k
∑ M k + Li

*

i
∑ }.

Since subproblems involve discrete decision variables, the objective function L in (2.7) may
not be differentiable at certain points in the π space. A subgradient method is therefore used
to solve the dual problem (Polyak, 1969, Held, Wolfe and Crowder, 1974). In the algorithm,
the multiplier π is updated iteratively according to

(2.8) π
n+1 = πn + α ng(πn),

where n is the high level iteration index, g(πn) is the subgradient of L with respect to π with

the kth component given by
(δ ik

i
∑ − M k)

, and αn (≥ 0) is the step size at the nth iteration.
From (2.8), it can be seen that πk increases when machines are over-utilized at time k and

decreases otherwise, reinforcing the pricing interpretation of π. With the step size αn given
by

(2.9)
αn = γ

L - Ln

g(π n)T g(π n)
,
 0 < γ< 2,

where Ln is the value of L at the nth iteration and L (> Ln) an estimate of the optimal
solution, this method converges at the rate of a geometric progression (Polyak, 1969). The
stepsizing mechanism used here is a modified version of that suggested by Fisher, 1981, and
also incorporates features used in Sandell, et al., 1982, and Pattipati, et al., 1984, with
parameters selected based on testing experiences. The subgradient algorithm terminates after
a fixed number of iterations has been reached.

The dual solution is generally associated with an infeasible schedule, i.e., capacity
constraints (2.2) might be violated for a few time slots. Processing time requirements (2.3),

8

however, are always satisfied in view of how subproblems are solved. To construct a feasible
schedule, a "list scheduling" heuristic is developed based on the optimal beginning times
{bi

*} of the dual solution. A list is first created by arranging jobs in the ascending order of
their respective optimal beginning times, and jobs are scheduled on machines according to
this list as machines become available. If several jobs have the same optimal beginning times
but there are not enough machines to start them all, a greedy heuristic determines which jobs
should begin at that time slot and which jobs should be delayed by one time unit. In this
greedy heuristic, the incremental change in tardiness cost if a job is delayed by one time unit
is calculated. Competing jobs are then assigned to machines in the descending order of
incremental changes, subject to machine availability for the remaining processing period of
the jobs. When all the machines available at that time slot are assigned, the leftover jobs are
delayed by one time unit, and compete with those jobs originally scheduled to start at the new
time slot, and the process repeats.

The value of the objective function J for the feasible schedule is an upper bound on the
optimal cost J*. The value of the optimal dual function L* obtained from (2.7), on the other
hand, is a lower bound on J* (Geoffrion, 1974; Nemhauser & Wolsey, 1988). The difference
between J* and L* is known as the duality gap. An upper bound of the duality gap is provided

by J - L*, and

J − L*

L*
 is thus a measure of the suboptimality of the feasible schedule with

respect to the optimal one.

To examine the impact of dynamic changes, consider the situation where a machine
breakdowns at time k after a schedule has been generated. What is the impact of this
breakdown on the objective function? This breakdown would likely cause an increase in the
objective function because the job originally scheduled on this machine at time k could be
pushed over or further behind its due date. This may also result in a "domino effect" of
pushing other jobs over or further behind their respective due dates. It is generally difficult to
estimate the impact of such a change on the objective function. As mentioned, the Lagrange
multiplier πk represents the price for utilizing a machine at time k. It also represents the
sensitivity of the objective function with respect to small changes in machine capacity. A
good estimate of the increase in J is therefore given by πk. If a job takes one more time unit
to complete than anticipated, there will be one less machine available for other jobs at that
extra time slot. The impact on J can also be estimated. Based on this sensitivity interpretation
of Lagrange multipliers, an effective technique has been empirically demonstrated to answer
a variety of "what if" questions (Luh, et al., 1990).

Given the totality of the manufacturing scheduling problem with its many machines and
jobs, most day-to-day changes in the system are relatively small (small changes in the
number of jobs to be scheduled, increases or decreases in processing times of a few jobs, and
minor fluctuations in capacity). The prices of machines or Lagrange multipliers, therefore,
should not change drastically from one day to the next day. Multipliers from the previous
schedule can thus be used to initialize the reconfiguration process and further reduce the
computation time. Some examples can be found in Luh, et al, 1990. Another example will be
provided in subsection 4.3 for the job shop scheduling problem.

9

2.3 Example4

In this example, 89 jobs of four different weights are to be scheduled on 42 machines.
Not all the machines are available at day 1 (time unit = day) as some of them are busy
processing jobs already started. The planning horizon is 88 days. The value of the optimal
dual solution is 1581.65, while the feasible schedule has a cost of 1583, which is within
0.085% of the dual solution. The CPU time to generate the schedule is 2.5 seconds on an
IBM 3090 mainframe computer with all multipliers initialized at zero. This example takes
data from the Tool and Die work center of Pratt & Whitney’s Development Operations (DO)
shop at East Hartford, Connecticut. This data and the resulting schedule are available upon
request.

3. SCHEDULING MULTIPLE-OPERATION JOBS ON PARALLEL, IDENTICAL
MACHINES

Now consider the non-preemptive scheduling of jobs each consisting of a small number
of operations on parallel, identical machines by extending the model and solution
methodology of the previous section5. The operations of a job must be undertaken in a
particular order (precedence constraints or process plans), and the job is not available for
scheduling between operations (a timeout) because of inspection or other processing which
does not require the use of the machines under consideration. The precedence structure is
assumed to be of the simple fork/join type with small numbers of operations as shown in
Figure 1. In the figure, each operation is represented by a node, and the "forking" represents
the case where several operations may be performed simultaneously. The time requirements
for processing and timeouts are assumed to be known. As in Section 2, jobs have different
due dates and levels of importance (weights), and the objective is to optimize the on time
delivery performance. The problem is thus one step more complicated than that considered in
Section 2.

3.1 Problem Formulation

Many aspects of this problem can be described by the problem formulation of subsection
2.1 with slight modifications. The capacity constraint can be stated as in (2.2) except that δik
now represents the number of operations of job i active at time k. The processing time
requirement for operation j of job i (or operation (i, j)) is given by:

(3.1) cij - bij +1 = tij, i = 1,...,I; j = 1,...,Ni;

where bij, cij and tij are, respectively, the beginning time, completion time and processing
time requirement of operation (i, j), and Ni is the number of operations of job i. In addition,
let Iij denote the set of operations immediately following operation (i, j). Then the precedence
constraints can be stated as follows:

4 More examples can be found in Luh, et al. 1990.

5 See also Hoitomt, et al., 1990a.

10

1.a

1.c

Figure 1 Examples of Simple Fork/Join Precedence Structures

Operation Timeout or dummy operation

1.b

(3.2) cij + Sijl +1 ≤ bil, i = 1,...,I; j = 1,...,Ni; l ∈ Iij;

where Sijl denotes the required timeout between operations (i, j) and (i, l) for l ∈ Iij.

The scheduling problem is to select operation beginning times {bij} so as to minimize the
weighted quadratic tardiness penalty J (2.1) of all jobs subject to capacity constraints (2.2),
precedence constraints (3.2), and processing time requirements (3.1).

11

3.2 Solution Methodology

To solve the problem, note that the Lagrangian relaxation equation (2.4) is still valid,
except that individual operations are to be scheduled, and precedence constraints (3.2) and
processing time requirements are to be satisfied. The decomposed low-level subproblem for
job i is therefore given by

(3.3)
min

1≤ bij ≤ (K-t ij +1)
 Li , with Li ≡ { w iTi

2 + πkδ ik
k
∑ },

subject to precedence constraints (3.2) and processing time requirements (3.1). As
previously, the multiplier πk represents the price for using a machine at time k. Define Lij as
the cost of performing operation (i, j) over the interval [bij , cij], i.e.,

(3.4)
Lij ≡ πk

k =b ij

bij +t ij −1

∑ ,

where the processing time requirement has been embedded in the equation. Then (3.3) can be
rewritten as the sum of the weighted quadratic tardiness penalty and the cost for using the
machines, or

(3.5)
min

1≤ bij ≤ (K-t ij +1)
 Li , with Li ≡ wiTi

2 + Lij
j=1

N i

∑ ,

subject to precedence constraints (3.2). Because precedence constraints are restricted to the
simple fork/join type with small Ni, the minimization of (3.5) is solved by enumeration. That

is, Li is computed for each possible value of {b ij}j =1
N i

 subject to precedence constraints, and

{bij
*} is the one yielding the lowest Li. The complexity of solving (3.5) is therefore related to

the number of operations, and is given by O(KNi).

Similar to (2.7), the high-level dual problem is

(3.6)
max

π ≥0
 L, with L ≡ { − πk

k
∑ M k + Li

*

i
∑ },

where Li
* denotes the optimal value of (3.5). To solve the dual problem, the subgradient

algorithm described in subsection 2.2 is used. In view of how subproblems are solved,
precedence constraints and processing time requirements are satisfied by the dual solution.
Capacity constraints, however, may be violated at certain time slots. A feasible schedule is
constructed by using the list scheduling technique similar to the one presented before. If
several operations have the same optimal beginning times but there are not enough machines
to start them all, a greedy heuristic determines which operations should begin at that time slot
based on the incremental change in the weighted tardiness penalty. Subsequent operations of

12

those delayed ones are checked to determine whether they should be delayed to preserve
precedence constraints. As previously, the difference between the objective function J for the
feasible schedule and the value of the optimal dual function L* provides a quantitative
measure of the quality of the resulting schedule.

3.3 Example

In this example, there are 44 machines and 112 jobs with a total of 210 operations. There
are five weights, and the planning horizon is 247 days (time unit = day), almost a year of
working days (excluding weekends and holidays). The lower bound on the optimal schedule
is 1,018,131, while the cost of the feasible schedule is 1,018,433, a difference of 0.03%. The
schedule was obtained in 17.0 CPU seconds on an IBM 3090 mainframe computer with the
initial value of πk equal to zero for all k. In this example, data from Pratt & Whitney’s Tool
and Die work center is again used. The data and the resulting schedule are available upon
request.

4. JOB SHOP SCHEDULING

Now consider the scheduling of a job shop, a typical environment for the manufacturing
of low-volume/high-variety products. In a job shop, machines are grouped into work centers
according to functions, and without loss of generality, each work center is assumed to possess
a set of parallel, identical machines with finite and maybe time varying capacity. Each job
consists of a sequence of operations to be performed in a particular order, and travels to
different work centers for processing. A sample process plan is shown in Figure 2. Each
operation can be performed at one of a number of work centers, and the operation time
requirement depends on the machine type selected to perform the operation. Compared to the
problem of Section 3, the precedence constraints are not restricted now, and there are a
number of different machine types. In addition, simple routing decisions must be made
because operations may be performed on several machine types. These differences make the
problem considerably more complex than that of Section 36.

 Heat Treat
 Welding

 Grinding

 Milling

NC Turning

Sheet Metal

NC Turning

Subassembly

 Coating

 Plating
 Welding

 Assembly

6 See also Hoitomt, et al., 1990b.

13

Figure 2. A Sample Process Plan

14

4.1 Problem Formulation

To formulate the scheduling problem with non-identical machines and precedence
constrained operations, let Hij denote the set of machine types which can perform operation
(i,j). Equation (2.2) is first extended to account for the capacity of each machine type h:

(4.1)
δ ijkh

ij
∑ ≤ M kh,

where δijkh is one if operation (i, j) is scheduled on machine type h ∈ Hij at time k, and zero
otherwise. Let Iij denote the set of operations immediately following operation (i, j), then the
precedence constraints can be stated as:

(4.2) cij + Sijl +1 ≤ bil, i = 1,...,I; j = 1,...,Ni; l ∈ Iij;

where Sijl is the required timeout between operations (i, j) and (i, l). Let tijh denote the

processing time of operation (i, j) on machine type h ∈ Hij. The processing time requirement

holds for the machine type h* ∈ Hij selected to perform the operation:

(4.3) cij - bij +1 = tijh*, i = 1,...,I; j =1,...,Ni.

The job shop scheduling problem then consists of selecting operation beginning times {bij}

and machine types {h ∈ Hij} to optimize the weighted quadratic tardiness penalty of all jobs
(2.1), subject to capacity constraints (4.1), precedence constraints (4.2) and processing time
requirements (4.3).

4.2 Solution Methodology

In subsection 3.2, the original problem is decomposed into job-level subproblems. If a job
has a large number of operations, the solution process would be very time consuming. In this
section, capacity constraints are again relaxed by using Lagrange multipliers, one set of
multipliers for each machine type. Furthermore, precedence constraints are relaxed by using
another set of multipliers. In doing this, the original job shop scheduling problem is
decomposed into much smaller operation-level subproblems.

In the first step of the solution process, the inequality precedence constraints (4.2) are
converted into equality constraints using inter-operation times {sijl} in preparation for the
augmented Lagrangian relaxation of the problem (Bertsekas, 1982).

(4.4) cij + sijl +1 = bil, i = 1,...,I; j =1,...,Ni-1; l ∈ Iij; with

(4.5) sijl ≥ Sijl.

15

To decompose the problem, the augmented Lagrangian is formed as follows. Capacity
constraints (4.1) are relaxed by using nonnegative Lagrange multipliers {πkh}; precedence

constraints (4.4) are relaxed by using Lagrange multipliers {λijl}; and quadratic penalty terms
with coefficients {pijl} are added to the objective function. The augmented dual problem is
then given by:

(4.6)
max
λ,π ≥0

 L, with L ≡ { − πkh
kh
∑ Mkh +

i
∑ min

{bij , sijl ,h⊂ H ij}
{ wiTi

2 +
j

∑ [πkh
k = bij

c ij

∑

+ [λijl (

l⊂ I ij

∑ bij + tijh + sijl − bil) +
pijl

2
(bij + t ijh + sijl − bil)

2]] } },

where the minimization within (4.6) are subject to (4.5). In the above, πkh is a non-negative

real variable, and λijl and pijl are real variables. The minimization within (4.6) are actually
job-level subproblems:

(4.7)
min

{bij ,s ijl , h⊂ Hij }
Li , with Li ≡ { wiTi

2 +
j

∑ [πkh
k= bij

bij + t ijh −1

∑ + [λ ijl (
l ⊂ I ij

∑ bij + tijh + sijl − bil)

+

pijl

2
(b ij + t ijh + sijl − bil)

2]] }.

The quadratic penalty terms are needed to prevent solution oscillation, as can be seen
from the following reasoning. Without the penalty terms (i.e., pijl ≡ 0), the minimization
within (4.7) can be decomposed into operation-level subproblems by appropriately re-
grouping individual terms. If operation (i, j) is not the last operation of job i (i.e., j ≠ Ni), its

beginning time bij is selected as a tradeoff between the cost for utilizing a machine
π kh

k =bij

b ij + t ijh −1

∑

versus the cost for violating precedence constraints
[λ ijl

l⊂ I ij

∑ − λ il j]
l :j ⊂I i l

∑
bij, a linear function of

bij. Many times this linear term dominates the resource utilization cost, and bij
* would be

very small if the coefficient of bij is positive (i.e., the multipliers associated with succeeding
operations (the first term in the linear coefficient) is larger than then the multipliers
associated with preceding operations (the second term in the linear coefficient)); otherwise,
bij

* would be very large. The resulting bij
* is therefore sensitive to small changes in

multipliers, and may oscillate over iterations. The quadratic penalty terms add the fine tuning
necessary for the balance between scheduling early versus scheduling late to fit all operations
of a job together.

Quadratic penalties, however, introduce cross product terms involving operations (i, j)
and (i, l) for l ∈ Iij. The job-level subproblem (4.7) therefore cannot be further decomposed
into operation-level subproblems. Since each job may contain many operations, the solution

16

to (4.7) via enumeration as done in Section 3 is impractical. To overcome this difficulty, an
iterative approach is taken. The operation beginning times of a job are solved in a sequential
order, starting from the first operation. In selecting bij, all other relevant operation beginning

times (bil, l ∈ Iij for succeeding operations and bil, j ∈ Iil for preceding operations) are
assumed fixed, taken from their latest computed values (or from initialization). With all other
relevant beginning times fixed, bij can be easily determined. After all the operation beginning
times of a job have been obtained, if the solutions to the current iteration are the same as the

solutions to the previous iteration (or initialization), the process converges and {bij
*}j =1

N i

 is
obtained. Otherwise, these newly computed operation beginning times are used to start the
next iteration, until the process converges or a fixed number of iterations has been reached.
This is the so called "Gauss-Seidel iterative technique" (Bertsekas, 1989), where an
operation-level subproblem is given by:

(4.8)
min

b ij ,sijl ,h⊂ H ij

{ wiTi
2∆ jNi

+ πkh
bij

bij + t ijh −1

∑ + [λ ijl (
l ⊂ I ij

∑ bij + tijh + sijl − bil) +
pijl

2
(bij + tijh + sijl − bil)2]

+ [λil j (

l : j⊂ I il

∑ bil + t ilh* + sil j − bij) +
pil j

2
(b il + tilh* +sil j − bij)

2] },

subject to (4.5), where ∆jNi
 =1 if (i, j) is the last operation of job i and 0 otherwise; bil and sil j

are respectively the most recently computed beginning time and inter-operation time related
to operation (i, l); and h* is the machine type selected to perform the preceding operation (i, l)
for j ∈ Iil .

In (4.8), there are three variables to be selected: operation beginning time bij, inter-
operation time sijl, and machine type h. The idea is to obtain sijl as a function of the other two
variables bij and h, and then enumerate through bij and h. It can be easily shown that with bij,

h, bil , and sil j given, the optimal value of sijl is max[Sijl,
sijl

r

], where sijl
r

 is the rounded integer

value of
[b il − bij − tijh −

λ ijl

pijl

]
. With sijl expressed in terms of the other two decision variables,

bij
* and h* can then be obtained by enumerating the beginning times from 1 through the time

horizon K for each possible machine type h ∈ Hij, and directly comparing the costs derived

from all possibilities. As mentioned, the Gauss-Seidel iteration for job i converges if bij = bij

and sijl = sijl for all j and l. If the Gauss-Seidel iteration does not converge within a fixed
number of iterations, the solution which generates the minimal job cost of (4.7) is used. To
obtain the job cost of (4.7), each operation cost of (4.8) must be reduced by the following
amount before adding up to avoid double counting of precedence related costs:

(4.9)
[
λ ijl

2
(

l ⊂ I ij

∑ bij + tijh + sijl − bil) +
pijl

4
(bij + tijh +sijl − bil)2]

17

+ [

λil j

2
(

l : j⊂ I il

∑ bil + tilh* + sil j − bij) +
pil j

4
(bil + tilh* + sil j − bij)

2].

To solve the high-level dual problem, the subgradient method of subsection 2.2 is used to
update the Lagrange multipliers π. The Lagrange multiplier λ is adjusted according to the
multiplier method update formula (Bertsekas, 1982):

(4.10) λ
n+1 = λn + png(λ n),

where n is the high level iteration index, pn the penalty coefficient at the nth iteration, and
g(λn) the subgradient of L in (4.6) with respect to λ. The subgradient component relating
operations (i, j) and (i, l) for l ∈ Iij is (bij + tijh + sijl - bil). The penalty coefficient pijl is

multiplied by a factor ζ (> 1) periodically (every five or ten iterations) if the subgradient
component of g(λn) is nonzero at that iteration. The parameter ζ is selected so that pijl is non-

decreasing but not so large that the problem becomes ill-conditioned (Bertsekas suggests ζ ∈
[4,10], p. 123).

The Lagrange multiplier πkh, as before, represents the price for utilizing a machine of

type h at time k. The Lagrange multiplier λijl relaxing precedence constraints (4.4) can be
interpreted as the cost of violating this constraint by one time unit. From a slightly different
perspective, it can be interpreted as the value for overlapping operations (i, j) and (i, l) by one
time unit, or the value for reducing the processing time tijh* or the required time out Sijl by
one time unit. From these, a variety of "what if" questions can be answered.

The quality of high-level multiplier updates depends on the convergence of the Gauss-
Seidel iteration. Since the Gauss-Seidel method is not guaranteed to converge to an optimum,
a limited Armijo type line search (Luenberger, 1984) is employed for the effective updating
of λ and π. The algorithm is stopped when a fixed number of high-level iterations has been
reached. As previously, the dual solution is generally associated with an infeasible schedule,
i.e., capacity constraints may be violated for a few time slots and/or a few precedence
constrained operations may overlap slightly. Violations of precedence constraints are first
corrected by pushing operation beginning times forward in time if necessary. The list
scheduling technique, as presented in subsection 3.2, is then applied to construct a feasible
schedule.

Since the Gauss-Seidel technique may not generate an optimal solution for each job, the
dual cost L of (4.6) is no longer a lower bound for the optimal cost J*. To evaluate the quality
of the resulting schedule, a second problem formulation is adopted. This problem formulation
replaces the precedence constraint (4.2) by

(4.11) ωijlk + σilk ≤ 1, i = 1,..., N; j = 0,..., Ni; k = 1,...,K; l ∈ Iij,

where ωijlk is an integer variable equal to one for every time unit k ≤ cij + sijl, l ∈ Iij, and zero

otherwise; and σilk is an integer variable equal to one for every time unit k ≥ bil and zero

18

otherwise. It can be easily checked that (4.2) and (4.11) are equivalent representations of
precedence constraints. The problem now is to maximize the weighted quadratic tardiness
(2.1) subject to capacity constraints (4.1), precedence constraints (4.11), and processing time
requirements (4.3). This problem can in principle be solved by using the standard Lagrangian
relaxation technique without the solution oscillation difficulty mentioned earlier. Prohibitive
computational requirements, however, would be needed in view of the dimensionality of the
Lagrange multipliers µijlk relaxing (4.11). By fixing the capacity constraint multiplier π at the
value obtained from the first problem formulation, this new dual problem can be decomposed
into job-level subproblems. The multiplier µ can then be obtained for each job by using the
subgradient method with reasonable computational requirements. The dual cost obtained by
this procedure is a lower bound to the optimal cost, and can be used to quantitatively evaluate
the quality of the schedule obtained from the list scheduling technique.

19

4.3 Examples

This example draws data from about twenty work centers relating to numerical control
(NC) machines of Pratt & Whitney’s DO shop. There are a total of 29 machines and all of
them are different (29 machine types). There are 140 jobs, each consisting of one to seven
operations, for a total of 186 operations. An operation may be performed on one of several
(up to six) machine types. Required timeouts of varying lengths also exist between
operations. The jobs are characterized by different due dates and may have one of five
different weights. The planning horizon is 214 working days. Not all the machines are
immediately available as some of them are busy processing jobs already started.

All the multipliers were initialized to zero, and penalty coefficients p were initially set to
0.5 and doubled every five iterations for those coefficients associated with violated
precedence constraints. The lower bound is obtained at 144,117, and the feasible schedule
has a cost 151,382 with a relative duality gap 5.05%. The time to solve the problem is 4.17
CPU minutes on an IBM 3090 mainframe computer. The existing schedule generated by a
knowledge-based scheduler was evaluated at 174,265, or 20.92% above the lower bound.

As another example, the NC machine group at the DO shop was scheduled over a three
week period in Spring 1991, where the schedule was updated to reflect the arrival and
departure of jobs and the latest information regarding machine status, process plans and
processing times. As in the previous example, each machine type has one machine, each job
may have up to seven operations, and each operation may be performed on one of several
different machine types. With each schedule reconfiguration, the multipliers from the
previous schedule were used to initialize the algorithm. The results are shown in Table 1
below. In the table, the problem size is MxN, where M is the number of machine types and N
is the number of jobs. Note that M varies slightly because only those machines required by
jobs are counted. The time horizon K is 300 days in each case, and CPU times are in minutes
for an IBM 3090 mainframe computer.

Table 1. Schedule Generation and Reconfiguration for NC Machines

Date Problem Size Cost J Lower Bound Duality Gap CPU Time
4/17 32x126 274,736 264,488 3.9% 2.6 min.
4/19 32x143 278,109 267,094 4.1% 2.8 min.
4/22 34x141 280,746 271,110 3.6% 2.9 min.
4/247 33x133 531,851 531,203 0.1% 3.0 min.
4/26 32x135 268,828 266,665 0.8% 2.8 min.
4/29 32x128 268,504 266,122 0.9% 2.2 min.
5/1 32x124 270,585 267,442 1.2% 2.3 min.
5/3 33x127 247,843 243,192 1.9% 2.1 min.

The consistent near-optimal quality of the schedules is demonstrated by the fact that all
the schedules are within 5% of their respective lower bounds. The computation time has also

7 A few single-operation, high priority tardy jobs arrived on this day, driving up the schedule cost. Since
these jobs immediately went into processing, the schedule cost returns to normal on 4/26.

20

been significantly improved over the previous example, since the multipliers and penalty
coefficients were initialized based on results from the previous schedule.

21

5. CONCLUDING REMARKS

Three scheduling problems have been formulated and solved in the increasing order of
complexity using the Lagrangian relaxation technique. It is worth mentioning that the
approach relies heavily on the additive nature of the tardiness objective function. Since the
objective function is job-wise additive, the problem can be decomposed into the scheduling
of individual jobs once the coupling capacity constraints are relaxed. If the objective function
were not additive, the relaxed problem could not be decomposed into the scheduling of
individual jobs. This is the case for the most widely used objective function in the scheduling
literature - the minimization of total production time, or the so called "makespan". The
relaxation approach would fail if makespan were the objective function. Furthermore, the
most important thing for a scheduling system is to meet on time delivery. If a schedule
minimizes makespan but finishes a very important tardy job the last, the scheduling system is
not doing its job. The tardiness related objective function therefore makes good sense for
shop management, and also renders decomposability which is crucial for practical sized
problems.

Numerical results for the three problems considered here show that the method generates
near-optimal schedules in a timely fashion. The method can also answer a wide range of
"what if" questions, and accommodate dynamic changes in the day-to-day scheduling
operations. The success of this step-by-step modeling and resolution demonstrates the power
of the approach for capturing the complexity, diversity and dynamics of many manufacturing
systems, and places it at the forefront of a new generation of scheduling methodologies.

REFERENCES

1. Ashton, J. E., and F. W. Cook, Jr., "Time to Reform Job Shop Manufacturing," Harvard
Business Review, March/April, 1989, pp. 106-111.

2. Bertsekas, D.P., and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice Hall, Englewood Cliffs, NJ, 1989.

3. Bertsekas, D.P., Constrained Optimization and Lagrange Multiplier Methods, Academic
Press, New York, NY, 1982.

4. Fisher, M.L., "Optimal Solution of Scheduling Problems Using Lagrange Multipliers,
Part I," Operations Research, Vol. 21, 1973, pp. 1114-1127.

5. Fisher, M.L., "Lagrangian Relaxation Method for Solving Integer Programming
Problems," Management Science, Vol. 27, 1981, pp. 1-18.

6. French, S., Sequencing and Scheduling, Wiley, New York, 1982.
7. Geoffrion, A.M., "Lagrangian Relaxation for Integer Programming," Mathematical

Programming Study, Vol. 2, 1974, pp. 82-114.
8. Graves, S.C., "A Review of Production Scheduling," Operations Research, Vol. 18,

1981, pp. 841-852.
9. Held, M., P. Wolfe and H. P. Crowder, "Validation of Subgradient Optimization,"

Mathematical Programming, Vol. 6, 1974, pp. 62-68.

22

10. Hoitomt, D.J., P.B. Luh, E. Max, K.R. Pattipati, "Scheduling Jobs with Simple
Precedence Constraints on Parallel Machines," Control Systems Magazine, Vol. 10, No.
2, Feb. 1990a, pp. 34-40.

11. Hoitomt, D.J., P.B. Luh, K.R. Pattipati, "Job Shop Scheduling," Proceedings of the First
International Conference on Automation Technology, Taipei, Taiwan, July 1990b, pp.
565-574.

12. Lenstra, J.K., A.H.G. Rinnooy Kan, P. Bruckner, "Complexity of Machine Scheduling
Problems," Annals of Discrete Mathematics, Vol. 7, 1977, pp. 343-362.

13. Luenberger, D. G., Linear and Nonlinear Programming, second edition, Addison-
Wesley, 1984.

14. Luh, P., D. Hoitomt, E. Max, K. Pattipati, "Schedule Generation and Reconfiguration for
Parallel Machines," IEEE Transactions on Robotics and Automation, Vol. 6, No. 6, Dec.
1990, pp. 687-696.

15. Nemhauser G.L., and L.A. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, Inc., New York, 1988.

16. Nowicki, E., and C. Smutnicki, "Worst Case Analysis of an Approximation Algorithm
for Flow Shop Scheduling," Operations Research Letters, Vol. 8, 1989, pp. 171-177.

17. Numao, M., and S. Morishita, "A Scheduling Environment for Steel-Making Processes,"
Proceedings of the Fifth Conference of Artificial Intelligence Applications, IEEE
Computer Society, Miami, Florida, March 6-10, 1989, pp. 279-286.

18. Pattipati, K.R., J.J. Shaw, J.C. Deckert, L.K. Beean, M.G. Alexandridis, W.P. Lougee,
"CONFIDANTE: A Computer-Based Design Aid for the Optimal Synthesis, Analysis
and Operation of Maintenance Facilities," Proceedings of the 1984 IEEE
AUTOTESTCON, Nov. 1984.

19. Polyak, B.T., "Minimization of Unsmooth Functionals", USSR Computational Math.
and Math. Physics, Vol. 9, 1969, pp. 14-29.

20. Sandell, N.R. Jr., D.P. Bertsekas, J.J. Shaw, S.W. Gully, R.F. Gendron, "Optimal
Scheduling of Large-Scale Hydrothermal Power Systems," Proceedings of the 1982
IEEE International Large-Scale Systems Symposium, Virginia Beach, Virginia, Oct.
1982, pp. 141-147.

