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Abstract. Manufacturing scheduling is an important but
difficult task.  Building on our previous success in
developing optimization-based scheduling methods using
Lagrangian relaxation for practical applications, this paper
presents a novel Lagrangian relaxation neural network
(LRNN) optimization techniques.  The convergence of
LRNN for separable convex programming problems is
established.  For separable integer programming
problems, LRNN is constructed to obtain near optimal
solution in an efficient manner.  When applying LRNN to
separable job shop scheduling, a new neural dynamic
programming method is developed to solve subproblems
making innovative use of the dynamic programming
structure.  The synergy of Lagrangian relaxation and
neural dynamic programming leads to a powerful neural
optimization method for job shop scheduling.  Testing
results obtained by software simulation demonstrate that
the performance is superior to what has been reported in
the neural network literature.  Results are also very close
to what were obtained by a state-of-the-art optimization
algorithm, and should be much improved when the
method is refined and implemented in hardware.

1. Introduction

Production scheduling is a major issue faced daily by
almost all manufacturers.  Deriving benefits from effective
scheduling, however, has been recognized to be extremely
difficult because of inherent problem complexity and the
sizes of real problems.  Recently, we have successfully
developed a combined Lagrangian relaxation, dynamic
programming, and heuristic approach to solve practical
manufacturing scheduling problems with excellent results
(Wang, Luh, Zhao, and Wang, 1997).  Building on these
results, this paper is to explore novel neural network
optimization techniques to further improve solution
quality and computational efficiency.

Neural networks for unconstrained optimization have
been based on the “Lyapunov stability theory” of dynamic
systems: if a network is “stable,” its “energy” will
decrease to a minimum as the system approaches and
attains its “equilibrium state.”  If one can properly set up a
network that maps the objective function of an
optimization problem onto an “energy function,” then the

solution is a natural result of network convergence to its
equilibrium, and can be obtained at a very fast speed
(Hopfield and Tank, 1985).

For constrained optimization, the Hopfield-type
networks have been based on the well known “penalty
methods,” which approximate a constrained problem as an
unconstrained one by having penalty terms on constraint
violations (Hopfield and Tank, 1985).  The unconstrained
problem is then solved by neural networks as mentioned
above.  Generally, a solution to the converted problem is
the solution to the original one only when penalty
coefficients approach infinity.  As coefficients become
large, however, the converted problem becomes ill
conditioned.  To obtain a solution without having
coefficients tend to infinity, a tradeoff between solution
optimality and constraint satisfaction has to be made by
fine tuning penalty coefficients.  The tradeoff, however, is
generally difficult to make.  In addition, Hopfield-type
networks may possess many local minima, and escaping
from local minima is not an easy task (Wilson and
Pawley, 1988).  The solution quality thus highly depends
on initial conditions.

Hopfield-type networks and its extended versions
were developed to solve job shop scheduling problems
(Foo and Takefuji, 1988, Zhou et. al., 1991).  Although
these models demonstrate the possibility of using neural
networks for scheduling problems, they suffer from the
above-mentioned difficulties, and it is not easy to scale up
these methods to solve practical problems.  Heuristics
have also been used to modify neuron dynamics to induce
constraint satisfaction (Satake, Morikawa and Nakamura,
1994, Willems and Brandts, 1995, Sabuncuoglu and
Gurgun, 1996).  The results, however, may be far from
optimal.

Recent developments on neural networks for
constrained optimization include combining Lagrangian
relaxation (LR) or augmented Lagrangian relaxation with
Hopfield-type networks, showing significant improvement
on solution quality (Wacholder, Han and Mann, 1989, Li,
1996).  The convergence of LRNN, however, has not been
fully established.  Furthermore, with “traveling salesman
problems” being the reference model used by most
researchers, method development has been problem
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specific with many important issues overlooked and great
opportunity missed.

 In this paper, the convergence of LRNN for
separable convex programming is established in Section 2.
For separable integer programming problems, LRNN is
also constructed to obtain near optimal solution in an
efficient manner.  LRNN is then applied to separable job
shop scheduling in Section 3.  In this case, the LRNN
consists of many sub-networks, one for each job (or part).
In Section 4, a new neural dynamic programming is
developed to solve the subproblems making innovative
use of the dynamic programming structure to handle
integer variables and subproblem constraints.  Testing
results presented in Section 5 demonstrate that the
performance of the method is much better than what has
been reported in the neural network scheduling literature.
The results are also very close to what were obtained by
our previous LR/DP approach results (Wang, Luh, Zhao,
and Wang 1997), which is believed to be at the cutting
edge of optimization-based scheduling methods.  Yet,
these results are based on software simulation, and should
be greatly improved when the method is implemented in
hardware.

2.  Lagrangian Relaxation with Neural Networks

Problem Formulation.  Consider the following separable
convex  programming problem:
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were xi is an ni×1 continuous decision variable, gi(xi) an

m×1 function, and I is the number of subproblems.
Assume that {Ji(xi)} and {gi(xi)} are convex and

differentiable functions.  Since both the objective function
and constraints are additive, the problem is separable.

Lagrangian Relaxation.  Playing a fundamental role in
constrained optimization over the decades, Lagrangian
relaxation is powerful for the above separable problems.
Since constraints (2.2) couple the decision variables xi,

they are “relaxed” by Lagrangian multipliers λ.  The
Lagrangian is thus given by
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Here λ is an m×1 vector of Lagrangian multipliers, and
the function L(λ) is the “Lagrangian dual.”  Since the
decision variables are decoupled through the introduction

of Lagrangian multipliers λ, (2.3) can be written in terms
of individual subproblems:
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where the optimal solution is denoted as L*= L(λ*).
Maximizing the dual without its explicit representation
can be done by several methods, including the most
widely used gradient method described by:

λk+1 = λk + αk ∇L(λk), (2.7)

where k is the iteration index, λk the multipliers at

iteration k, αk the step size, and ∇L(λk) the gradient of

the dual function L(λ) evaluated at λk.  The dual function
is always concave, and provides a lower bound to the
optimal primal cost.  Let the optimal dual be denoted as

L* = L(λ*,x*), where x* is the minimum of the relaxed

problem given the optimal multipliers λ*.

Lagrangian Relaxation Neural Networks.  LR has
recently been combined with neural networks to solve
constrained optimization problems.  The key idea of
LRNN is to view the multiplier updating formula (2.7) as
a set of differential equations.  The multipliers themselves
can thus be viewed as a dynamic system. For a given set
of multipliers, the relaxed subproblem (2.4) can be solved
by using neural networks for unconstrained optimization.
The multipliers together with subproblem networks then
form the overall LRNN.  The network elements that
update multipliers will be referred to as the “Lagrangian
neurons.”  In contrast, neurons solving the subproblems
will be called “decision neurons.”  The dynamics of the
LRNN can therefore be described by the following
differential equations:
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Here α(t) and β(t) are positive numbers and can be time
varying.

Convergence of LRNN.  The convergence of a specific
LRNN implementation (2.8), (2.9) with α(t) = β(t) ≡ 1
was established in 1958 for strictly convex problems
(Arrow, Hurwicz, and Uzawa, 1958. p. 129).  This
method, however, leads asymptotically to a periodic
solution when both the objective function and constraints
are linear (Dorfman, Samuelson and Solow, 1958).  To
overcome this difficulty, a modified version was
established for convex problems (not necessarily strictly
convex) by introducing a nonlinear transformation of
constraints (Arrow, Hurwicz, and Uzawa, 1958, p. 137).
This nonlinear transformation, however, destroys the
separability of the original problem.

The following steps establish the convergence of
LRNN for convex programming (not necessarily strictly
convex) without destroying the separability of the original
problem.

Proposition 1.  Given the current point (λ(t), x(t)), if
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then the gradient direction of λ(t) is always in an acute

angle with the direction towards λ*, e.g.,
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Proof.  First define the surrogate dual as
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Since minimization is performed in defining L(λ) in (2.3),
the surrogate dual always satisfies:
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The above is also true at (λ*, x(t)), i.e.,
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From (2.14), this can be written as
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and (2.12) is proved. Q.E.D.

Proposition 2.  If the initial point satisfies
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With (2.19), we have
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Together with  (2.18), it can be shown that
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< L*.   Q.E.D.

Thus we have the following Theorem:

Theorem 1.  For a convex programming problem, (λ(t),
x(t)) in the LRNN described by (2.8) and (2.9) will

converge to an optimal point  (λ*,x*) as long as
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Proof.  From Propositions 1 and 2, the gradient direction
of λ(t) is always in an acute angle with the direction

pointing to λ*.  From (2.12), we have

0
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This means that λ(t) gets closer and closer to λ*.  Now

assume that (λ(t), x(t)) converges to (λ+,x+). Then (2.8)

and (2.9) imply that x+ is the optimal solution for the

given λ+, and L(λ+) = L*.  Thus (λ+, x+) is an optimal
solution.  It can also be shown by contradiction that (λ(t),
x(t)) always converge to a certain point.  Thus the theorem
is proved.   Q.E.D.

The above proof is for a particular implementation of
LRNN based on the gradient approach (2.9).  In fact, the

key condition is 
dt
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and (2.21). This implies that as long as the dynamics of

the decision neurons causes )t(L
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 to decrease for the

given multipliers, LRNN will converge.  This is general
regardless if x is continuous or discrete.  Creative
variations beyond (2.9) can therefore be developed to fit
the specific needs of individual problems (Zhao, Luh, and
Wang, 1999).

LRNN for Separable Integer Programming Problems.
Integer programming problems are generally difficult to
solve because of their inherent combinatorial complexity.
Lagrangian relaxation, however, has been proven to be
particular powerful for separable integer programming
problems.   Given such a problem, the hard coupling
constraints are first relaxed through the introduction of
Lagrangian multipliers.  The relaxed problem can be
decoupled into individual subproblems.  If these
subproblems are not NP hard, they can be solved for a
given set of multipliers.  Multipliers are then iteratively
adjusted based on the levels of constraint violation.  At
termination of such updating iterations, simple heuristics
are applied to adjust subproblem solutions to form a
feasible result satisfying all constraints.

Since subproblem solutions will tend to satisfy the
constraints and approach the optimal feasible solution
over the iterations, Lagrangian relaxation provides a
powerful approach to obtain near optimal solutions for NP
hard integer programming problem.  Furthermore, since
dual costs are lower bounds to the optimal cost, quality of
the solution can be quantitatively evaluated by comparing
the feasible cost with the highest dual cost obtained.

Based on the above idea, LRNN can be constructed
for separable integer programming problems.
Constructing subnetworks to effectively solve
subproblems, however, is a challenging task and may be
case dependent.  The traditional neural optimization
approach for 0-1 integer programming problems is to
approximate discrete variables by continuous ones.  For
example, it is known that “high gain” of “sigmoid”
activation functions can be used to induce integer
solutions (Hopfield and Tank, 1985).  If the gain is too

high, however, the problem will be ill conditioned.  The
penalty term [x ⋅ (1-x)] can also be used to induce x to
either 0 or 1.  These penalty terms, however, may impede
solution quality.  The handling of constraints within a
subproblem poses another difficulty.  If these constraints
are handled by using the penalty method, solutions may
not be feasible, and local minima cannot be avoided.  If
relaxation is used, additional multipliers have to be
introduced, and this will lead to slow convergence.

In spite of the above difficulties, it is possible to
design specific subnetworks to optimally solve
subproblems while handling integrality and subproblem
constraints if the subproblems are not NP hard.  The
synergy of Lagrangian relaxation and these specific
subnetworks enables LRNN to obtain near optimal
solution with quantifiable quality in an efficient manner
for complex integer programming problems.  In the
following, we will apply LRNN to a separable job shop
scheduling problems.

3.  Job Shop Scheduling via LRNN

In the basic job shop formulation, each job (or part)
has its due date, priority, and requires a series of
operations for completion.  Each operation is to be
performed on a machine of a specified machine type for a
given period of time.  The processing may start only after
its preceding operations have been completed, satisfying
the operation precedence constraints.  Furthermore, the
number of operations scheduled on a machine type at any
time may not exceed the number of machines available,
satisfying the machine capacity constraints.  Through
appropriate selection of decision variables, these constraints
are formulated in additive forms (Hoitomt, Luh and
Pattipati, 1993).  The time-based competition goals of on-
time deliveries and low inventory are modeled as penalties
on delivery tardiness and on releasing raw materials too
early.  The problem is to determine operation beginning
times so that the objective function is minimized.  Unlike
other prevalent formulations in the lierature, the key
feature of our formulation is its separability.

Within the LR framework, machine capacity
constraints are relaxed by using Lagrange multipliers.
Since the formulation is separable, the relaxed problem
can be decomposed into decoupled part subproblems for a
given set of multipliers.  Each subproblem represents the
scheduling of a part to minimize its tardiness and earliness
penalties and the costs for using machines (as reflected by
the values of Lagrangian multipliers for different machine
types at various time slots).

Each subproblem can be viewed as a multistage
optimization problem, and can be solved by using
dynamic programming (DP).  A typical DP structure is
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shown in Figure 1.  With stages corresponding to
operations and states corresponding to operation
beginning times, the backward DP algorithm starts with
the last stage, and computes the tardiness penalties and
machine utilization costs.  As the algorithm moves
backwards, cumulative costs of individual states
belonging to a particular stage are computed based on the
stage-wise costs and the minimum of the cumulative costs
for the succeeding stage, subject to allowable state
transitions as delineated by operation precedence
constraints.  This minimization can be efficiently
implemented by pair-wise comparison, starting from the
last state (largest possible operation beginning time) of the
succeeding stage (Wang, Luh, Zhao and Wang 1997).
The optimal subproblem cost is then obtained as the
minimum of the cumulative costs at the first stage, and the
optimal beginning times for individual operations can be
obtained by tracing the stages forwards.

1           2           3           4

Stage 2

Stage 1

Figure 1. DP Structure

 Iterative adjustment of multipliers, repeated
resolutions of subproblems, and the final heuristic
adjustment of subproblem solutions lead to near-optimal
solutions of the original problem.

4.  Neural Dynamic Programming

The above LR approach can be naturally mapped
onto an LRNN presented in Section 2.  The key challenge
is to develop efficient sub-networks to solve part
subproblems.  To effectively handle integer variables and
operation precedence with each part, neural dynamic

programming (NDP) is developed1.  The key idea is to
make the best use of the DP structure already existed, and
implement the DP functions by neurons.  In doing this, the
DP structure illustrated in Figure 2 is maintained, and
each state is represented by a neuron to obtain the
cumulative cost by adding up two values, the stage-wise
cost derived from multipliers and the minimum of the
cumulative costs of the succeeding stage.  The pair-wise
comparison to obtain the minimum cumulative costs of

                                                          
1 This is fundamentally different from the “Neuro-
Dynamic Programming” of Bertsekas and Tsitsiklis
(1996) which was developed for the better training of
feedforward neural networks.

the succeeding stage is carried out through the
introduction of another layer of “comparison neurons.”
The connections of comparison neurons and “state
neurons” are subject to state transitions as shown in
Figure 2, where comparison neurons are represented by
gray circles.  The traditional backward DP algorithm is
thus mapped onto a neural network with simple topology
and elementary functional requirements that can be
implemented in hardware.  The number of neurons
required for subproblem i is roughly twice the number of
states in its DP structure, i.e., 2×Ji×K, where Ji is the
number of operations for part i, and K the time horizon.

Stage 1

Stage 2

1           2           3           4

Figure 2. NDP Structure

Since the DP structure is fully exploited in NDP,
integrality is satisfied and local minima of subproblem
solutions are avoided.  In addition, the solution satisfies
all subproblem constraints that are handled by the
standard DP.  Difficulties such as infeasibility, local
minima, and slow convergence of subproblem solutions
encountered by using the penalty or relaxation method do
not exist any more.

The stage-wise costs in NDP depend on multipliers,
and change continuously as multipliers are updated.
Therefore at any instant of time, the NDP results may not
be optimal for the multipliers at that snap shot.  However,
the NDP can obtain the optimal solution after the signal
propagated from the last stage to the first stage, and this
takes almost zero time in hardware implementation.  Thus
the overall convergence of LRNN is similar to the LRNN
presented in Section 2.

5. Testing Results

Testing of LRNN for basic job shop scheduling
problems described in Sections 3 and 4 has been
conducted by simulating the LRNN and then feeding the
results to our previous heuristics.  At the final iteration,
multipliers are fixed and optimal subproblem solutions are
obtained by NDP.  In this way, the dual cost is calculated
and the duality gap provides a measure of solution quality.
Exciting results for problems of various sizes have been
obtained on a Pentium Pro 200 MHz PC as summarized in
the following Table.
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Table 4.1.  Testing results for LRNN
Size P O M D CPU
Small 6 12 5 0.0% 0:02
Middle 20 200 10 0.4% 1:00
Large 82 752 14 6.9% 9:34

Part, Operation, Machine, Duality-Gap are respectively
represented by their first letters in the table.  CPU-Time is
in minute:second format.

It is amazing to see that the performance of the
LRNN, in terms of sizes of problems solved, solution
quality, and CPU times, is much better than what has been
reported in the neural network scheduling literature.
Examples include the 14 part problem by Satake, 1994,
and the 20 part problem by Sabuncuoglu 1996.  The
results are also very close to what were obtained by our
previous LR/DP approach, which is believed to be at the
cutting edge of optimization-based scheduling methods.

6.  Conclusion

The convergence proof of LRNN presented in this
paper provides a framework allowing creative
implementation variations.  The specific LRNN for job
shop scheduling contains the novel neural dynamic
programming to overcome the difficulties associated with
local minima and solution infeasibility encountered by
conventional Hopfield type networks.  Numerical testing
demonstrated that the method is much better than what has
been reported in the neural network literature, and results
should be much improved when the method is
implemented in hardware.
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