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Abstract

We study the stability and region of attraction properties of a fam-
ily of unconstrained receding horizon schemes for nonlinear systems.
In a recent paper, using Dini’s theorem on the uniform convergence of
functions, we showed that there is always a finite horizon for which the
corresponding receding horizon scheme is stabilizing without the use
of a terminal cost or terminal constraints. In this paper, after showing
that optimal infinite horizon trajectories possess a uniform convergence
property, we show that exponential stability may also be obtained with
a sufficient horizon when an upper bound on the infinite horizon cost
is used as terminal cost. Combining these important cases together
with a sandwiching argument, we are able to conclude that exponen-
tial stability is obtained for unconstrained receding horizon schemes
with a general nonnegative terminal cost for sufficiently long horizons.
Region of attraction estimates are also included in each of the results.

Keywords: receding horizon control, nonlinear control design, model
predictive control, optimal control.

Introduction

In receding horizon control, a finite horizon optimal control problem is
solved, generating an open-loop state-control trajectory. The resulting con-
trol trajectory is then applied to the system for a fraction of the horizon
length. This process is then repeated, resulting in a sampled data feedback
law. Although receding horizon control has been successfully used in the
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process control industry, its application to fast, stability critical nonlinear
systems has been more difficult. This is mainly due to two reasons. The
first problem stems from the fact that the finite horizon optimizations must
be solved in a relatively short period of time. Second, it is well known and
can be easily demonstrated using linear examples that a naive application
of the receding horizon strategy can have disastrous effects, often rendering
a system unstable. Various approaches have been proposed to tackle this
problem. See [17] for an excellent, up to date, review of this literature.

A number of approaches employ the use of terminal state equality [14] or
inequality [18, 20, 5, 16, 19] constraints, often together with a terminal cost,
to ensure closed loop stability. In [21], aspects of a stability guaranteeing
global control Lyapunov function (CLF) were used, via state and control
constraints, to develop a stabilizing receding horizon scheme with many
of the nice characteristics of the CLF controller together with better cost
performance. Unfortunately, a global control Lyapunov function is rarely
available and often not possible.

Motivated by the difficulties involved in and cost of solving constrained
optimal control problems, the authors developed an unconstrained receding
horizon control strategy for the stabilization of nonlinear systems [11, 12, 13].
In this approach, closed loop stability is ensured through the use of a ter-
minal cost consisting of a control Lyapunov function that is an incremental
upper bound on the optimal cost to go. In the absence of explicit constraints,
a dramatic speedup in computation is noted. Also, questions of existence
and regularity of optimal solutions (very important for online optimization)
can be dealt with in a rather straight forward manner.

Furthermore, it was shown in [12, 13] that region of attraction estimates
of the unconstrained receding horizon control law are always larger than
those of the CLF controller and can be grown to include any compact subset
of the infinite horizon region of attraction by a suitable choice of the horizon
length. Other authors, including [6, 24, 22] have shown (in the context of
constrained linear systems) that, for sufficiently long horizons, the terminal
stability constraints are implicitly satisfied. In a recent paper [22], it was
shown that, in the case of constrained discrete-time linear systems, there
always exists a finite horizon length for which the receding horizon scheme
is stabilizing without the use of a terminal cost or constraint.

In a recent paper [10], we studied the stability and region of attraction
properties of a family of unconstrained receding horizon schemes for nonlin-
ear systems. Using Dini’s theorem on the uniform convergence of functions,
we showed that there is always a finite horizon for which the correspond-
ing receding horizon scheme is stabilizing without the use of a terminal cost



or terminal constraints. In this paper, after showing that optimal infinite
horizon trajectories possess a uniform convergence property, we show that
exponential stability may also be obtained with a sufficient horizon when an
upper bound on the infinite horizon cost is used as terminal cost. Combining
these important cases together with a sandwiching argument, we are able to
conclude that exponential stability is obtained for unconstrained receding
horizon schemes with a general nonnegative terminal cost for sufficiently
long horizons. Region of attraction estimates are also included in each of
the results.

This paper is organized as follows: After presenting the problem set-
ting in 1, we review the unconstrained receding horizon control of nonlinear
systems with stability resulting from the use of a CLF terminal cost. Our
results on the stability of receding horizon schemes with zero terminal cost
are reviewed and presented in section 3. In section 4, we discuss the case
where the terminal cost is an upper bound on the infinite horizon cost-to-go.
In section 5, we present our main result, by combining the results of the two
previous sections.

1 Problem setting

The nonlinear system under consideration is

z = f(z,u)

where the vector field f : R® x R™ — R” is C? and possesses a linearly
controllable critical point at the origin, e.g., f(0,0) = 0 and (4, B) :=
(D1£(0,0), D2f(0,0)) is controllable. Given an initial state z and a control
trajectory u(-), the state trajectory z"(-;z) is the (absolutely continuous)
curve in R" satisfying

t
z*(t;z) =z -1-/0 f@*(r;2),u(r)) dr

for ¢t > 0.

The performance of the system will be measured by a given incremental
cost ¢ : R® x R™ — R that is C? and fully penalizes both state and control
according to

a(z,u) 2 cq(llz]* + [lul®),  z€R'ueR"

for some ¢4 > 0 and ¢(0,0) = 0. It follows that the quadratic approximation
of ¢ at the origin is positive definite, D%¢(0,0) > ¢,I > 0.



To ensure that the solutions of the optimization problems of interest are
nice, we impose some convexity conditions. We require the set f(z,R™) C
R™ to be convex for each z € R". We also require that the pre-Hamiltonion

function ws p? f(z,u) + q(z,u) =: K(z,u,p) be strictly convex for each
(z,p) € R*" x R* and that there is a C? function a* : R x R* — R™ :
(z,p) — u*(z,p) providing the global minimum of K(z,u,p). The Hamil-
tonian H(z,p) := K(z, 4" (x,p),p) is then C? ensuring that extremal state,
co-state, and control trajectories will all be somewhat smooth (C! or bet-
ter). Note that these conditions are trivially satisfied for control affine f
and quadratic q.
The cost of applying a control u(-) from an initial state = over the infinite

time interval [0, 00) is given by

J@@nu»::Amqw%wauw»dT.

The optimal cost (from z) is given by

Tio(@) = inf o, )

where the control functions u(-) belong to some reasonable class of admissible

controls (e.g., piecewise continuous or measurable). The function #» J& (z)
is often called the optimal value function for the infinite horizon optimal
control problem.

For the class of f and g considered, we know that J (-) is a positive
definite C2 function on a neighborhood of the origin. This follows from the
geometry of the corresponding Hamiltonian system [25, 26, 8]. In particular,
since (z,p) = (0,0) is a hyperbolic critical point of the C' Hamiltonian
vector field Xy (x,p) := (DoH(z,p), —D1H(z,p))T, the local properties of
J% (+) are determined by the linear-quadratic approximation to the problem
and, moreover, D2J% (0) = P > 0 where P is the stabilizing solution of the
appropriate algebraic Riccati equation.

For practical purposes, we are interested in finite horizon approximations
of the infinite horizon optimization problem. In particular, let V(-) be a
nonnegative C? function with V(0) = 0 and define the finite horizon cost
(from z using u(-)) to be

T
Tr(@,u)) = [ afa*(riz),u(r) dr + V(" (T:2))
0
and denote the optimal cost (from z) as

Ti(@) = int Jr(z,u()
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As in the infinite horizon case, one can show, by geometric means, that J7(-)
is locally smooth (C?). Other properties will depend on the choice of V and
T.

Let I'*® denote the domain of JZ (-) (the subset of R” on which J% is
finite). It is not too difficult to show that the cost functions J} (-) and
J5(+), T > 0, are continuous functions on I's, using the same arguments as
in proposition 3.1 of [2]. For simplicity, we will allow JZ (-) to take values in
the extended real line so that, for instance, J% (z) = +oo means that there
is no control taking z to the origin.

We will assume that f and ¢ are such that the minimum value of the
cost functions J3 (z), J(z), T > 0, is attained for each (suitable) z. That
is, given £ and T' > 0 (including T = co when z € T®°), there is a (C* in )
optimal trajectory (zX(t;z), u’.(t;2)), t € [0,T], such that Jr(z,uk(-;z)) =
J7(z). For instance, if f is such that its trajectories can be bounded on
finite intervals as a function of its input size, e.g., there is a continuous
function § such that ||z*(t; zo)|| < B(||lzoll, [|u(-)l[z,[0,q), then (together with
the conditions above) there will be a minimizing control (cf. [15]). Many
such conditions may be used to good effect, see [4] for a nearly exhaustive
set of possibilities. In general, the existence of minima can be guaranteed
through the use of techniques from the direct methods of the calculus of
variations—see [3] (and [7]) for an accessible introduction.

It is easy to see that JZ () is proper on its domain so that the sub-level
sets

= {z €T®: J:(z) <r?}
are compact and path connected and moreover I'® = |J,,I'2°. Note also
that ' may be a proper subset of R” since there may be states that cannot
be driven to the origin. We use r2 (rather than r) here to reflect the fact
that our incremental cost is quadratically bounded from below. We refer to
sub-level sets of J7.(-) and V(-) using

I'T .= path connected component of {z € I'™® : J&(z) < 2} containing 0,
and

Q, := path connected component of {z € R" : V(z) < r?} containing 0.
2 Unconstrained receding horizon control with CLF
terminal cost

Receding horizon control provides a practical strategy for the use of model
information through on-line optimization. Every ¢ seconds, an optimal con-



trol problem is solved over a T second horizon, starting from the current
state. The first § seconds of the optimal control w}.(-;z(t)) is then applied
to the system, driving the system from z(¢) at current time ¢ to z3.(6, z(t))
at the next sample time ¢ + §. We denote this receding horizon scheme as
RH(T,0).

In defining (unconstrained) finite horizon approximations to the infinite
horizon problem, the key design parameters are the terminal cost function
V(-) and the horizon length T' (and, perhaps also, the increment §). What
choices will result in success?

It is well known (and easily demonstrated with linear examples), that
simple truncation of the integral (i.e., V(x) = 0) may have disastrous effects
if T'> 0 is too small. Indeed, although the resulting value function may be
nicely behaved, the “optimal” receding horizon closed loop system can be
unstable.

A more considered approach is to make good use of a suitable terminal
cost V(+). Evidently, the best choice for the terminal cost is V(z) = J% (z)
since then the optimal finite and infinite horizon costs are the same. Of
course, if the optimal value function were available there would be no need
to solve a trajectory optimization problem. What properties of the optimal
value function should be retained in the terminal cost? To be effective,
the terminal cost should account for the discarded tail by ensuring that the
origin can be reached from the terminal state z*(7’; z) in an efficient manner
(as measured by ¢). One way to do this is to use an appropriate control
Lyapunov function (CLF) which is also an upper bound on the cost-to-go.

The following theorem shows that the use of a particular type of CLF is
in fact effective, providing rather strong and specific guarantees.

Theorem 1 [13] Suppose that the terminal cost V(-) is a control Lyapunov
function such that mingegm (V + q)(z,u) < 0 for each = € Q,, for some
Ty > 0. Then, for every T' > 0 and ¢ € (0,T], the receding horizon scheme
RH(T, o) is exponentially stabilizing. For each T > 0, there is an #(T) > 1,
such that FE(T) is contained in the region of attraction of RH(T, ). More-

over, given any compact subset A of I'*°, there is a T such that A C I‘?(T)
for all T > T*.

Theorem 1 shows that for any horizon length 7" > 0 and any sampling
time § € (0,7], the receding horizon scheme is exponentially stabilizing
over the set I‘;:’;. For a given T, the region of attraction estimate is en-
larged by increasing r beyond r, to 7(T') according to the requirement that
V(z%(T;z)) < 72 on that set. An important feature of the above result is



that, for operations with the set FFTT , there is no need to impose stabil-
ity ensuring constraints which woul iikely make the online optimizations
more difficult and time consuming to solve. Of course, this method requires
a suitable CLF. There are various techniques, requiring substantial offline
computation, for the successful construction of such CLFs—see [9] for a
detailed example using a quasi-LPV method.

Experience has shown that receding horizon strategies with terminal
costs not satisfying the above condition are often effective provided that
an optimization horizon of suitable length is used. It is therefore desirable
to develop stability arguments that are valid for a more general class of
terminal costs. As it was shown in [10] and reviewed in the next section,
there is always a finite horizon length for which exponential stability of the
receding horizon scheme with a zero terminal cost and fixed ¢ is guaranteed.
Moreover, we will show that the same result holds when the terminal cost is
a locally quadratic upper bound on the infinite horizon cost-to-go J3 (-). As
these two cases are, in some sense, limiting cases of a general terminal cost,
we will show that similar stability results hold in the general case. All of the
results follow rather naturally once the uniform convergence (over compact
sets) of the finite horizon costs to the infinite horizon cost is shown.

3 Receding horizon control with zero
terminal cost

One would expect that as the horizon length grows, the effect of the terminal
cost should diminish. Therefore it is reasonable to ask whether there is a
finite horizon such that the receding horizon scheme would be stabilizing
with a zero terminal cost, i.e., V(z) = 0.

We know that, when the horizon is infinite, the minimum cost func-
tion J% () qualifies as a Lyapunov function for proving the stability of
corresponding optimal feedback system. Also, we know that, as T — oo,
J5(-) = J% () in many ways (e.g., pointwise in ). An important question is
whether there is a (sufficiently large, yet finite) horizon length 7" for which
the minimum cost JJ.(-) qualifies as a Lyapunov function for proving the
stability of a corresponding receding horizon scheme, e.g., RH(T,6).

This question was answered fairly recently in the context of constrained
discrete-time linear systems [22]. We showed in [10] that a similar result
holds in the case of unconstrained nonlinear systems and zero terminal cost.

Recall that an extended real valued function f(-) is upper semicontinuous
if f71((—o0,c)) := {r € R* : f(z) < c} is open for each ¢ € R. We will



make use of the following well known result [23].

Theorem 2 (Dini) Let {f,} be a sequence of upper semicontinuous, real-
valued functions on a countably compact space X, and suppose that for each
z € X, the sequence {fn(z)} decreases monotonically to zero. Then the
convergence is uniform.

We begin with a rather simple result that will be used here and in the
sequel. The proof is a simple exercise but is included for completeness.

Lemma 3 For each 6 > 0, J(}‘,O(-) is continuous and positive definite on R™
and locally quadratic positive definite. That is, J(;O(a:) >0 for all z € R" \
{0} and J5,(z) > al|z||? in a neighborhood of O for some a > 0. Moreover,
for any r >0, there is an a > 0 such that J§y(z) > al|z||? for all z € T°.

The ‘0" in the subscript is used to indicate J§ o (z) = J; (z) with zero terminal
cost. This special notation is needed as this function will also be used in the
discussion of receding horizon schemes with nonzero terminal cost.

Proof: Continuity of Jg,o(') on R" is easily shown using arguments of the
sort used in proposition 3.1 of [2].
It is easy to show, e.g., by geometric methods [25, 26, 8], that Jj,(-) is
C? near 0 with )
Tio(@) = 52" Py + oflal?)

where Py = P(—{) satisfies the Riccati equation

P(t)+ (A— BR'ST)TP(t) + P(t)(A — BR187)
— P(t)BR™'BTP(t)+ (Q — SR™'ST) =0

with P(0) = 0 where Df(0,0) = [ A B ] is controllable and D?¢(0,0) =
k.

ST R
is the optimal value of the corresponding linear quadratic optimal control
problem. That Pjs is actually positive definite is easily shown by contradic-
tion. Following [1], if there is an zo # 0 such that 2} Pszo = 0 then, since the
corresponding optimal control must be zero (as u is fully penalized), it must
also be true that eA*zy = 0 (as x is also fully penalized—an observability
condition). Thus, P; > 0 for each § > 0 and Jj (-) is locally quadratically
positive definite. (One may also note the well known fact that 0o > 01 >0
implies Pj, > Pjs, > O.)

> %“I > 0. Clearly, Pj is positive semi-definite since %mTP(;:c



Similarly, suppose that there is a nonzero zo such that Jj,(zo) = 0.
Once again, since z is fully penalized, this would imply that the zero input
nonlinear system trajectory beginning at zy would be identically zero, a
clear contradiction.

The final claim follows easily from the continuity of Jj(-). O

We have the following result (cf. [10]).

Theorem 4 Let r > 0 be given and suppose that V(z) = 0. For each 6 > 0
there is a T* < oo such that, for any T > T*, the receding horizon scheme
RH(T,0) is exponentially stabilizing. Moreover, the set P;:Fl_‘;, with r < r
such that I‘;:Fl_‘s C I'®, is contained in the region of attraction of RH(T,J).

Proof: By the principle of optimality,

4
Jr(z) :/0 q(z7(7; ), up (73 2)) dT + Jp_5(27(6; 7))
so that
Ti_g(@3(552)) — Ji_s(@w) = Ji() — Ji_y(@) — [ alw} (), up () dr
< =Jiole) + Jp(z) — Jp_s() -

Since V(z) = 0, it is clear that 77 < T5 implies that Jp, (z) < Jp,(z) for all
z so that

Ti_s@n(6:3)) — To_y(3) < —Tio(@) + Tia(@) — T_y(a) -
If we can show, for example, that there is a T* such that T' > T™* yields
* 1 *
Joo(x) — Jr5(2) < §J5,o($)

for z € I'®, stability (and, in fact, exponential stability) over any sublevel
set of JJ._;(-) contained in I'?® will be assured. To that end, define, for
el

Joo(@) = Jp_5(2)

, 0
r(z) == Tso(@) 7
limsupyr(z), z=0
z—0

and note that ir(-) is upper semicontinuous on I'?°. This follows easily
since 9r(-) is continuous at all z # 0 (J;o(z) > 0 for z # 0) and is finite



: T(Po—Pr_
at z = 0 with ¢7(0) = max|jz=; w

the positive definite matrices defined as above.

We see that {¢7(-)}r>0 is a monotonically decreasing family of upper
semicontinuous functions defined over the compact set I'S°. Hence, by Dini’s
theorem, there is a T* < oo such that ¢r(z) < & for all z € I'®® and all
T > T*. The result follows since, for 71 > 0 such that I‘TTI_‘S C I';°, we have

1

Jr_s(z7(852)) — Jp_s(z) < —EJio(x)

for x € I‘TTI_‘S. O

where Pr_g, Py, and Py, are

We see that when the optimization horizon is chosen to be sufficiently long,
the trivial terminal cost V(z) = 0 is fine. In a sense, if no offline calculations
are used to determine a suitable CLF, more online computations may be
required to ensure closed loop stability of the receding horizon scheme. One
might imagine that a suitably long horizon might also be adequate to ensure
the stability of a receding horizon scheme when the dynamics and/or cost
change in real-time such as when a fault occurs or a new objective is required.

4 Using an upper bound on the infinite
horizon cost-to-go as a terminal cost

In the previous section (with V(z) = 0), we exploited the fact that Jj(z)
increases monotonically with 7' to show that Jj_;(-), with T' large, could
be used as a Lyapunov function. A similar monotonicity property (actually
reversed) is obtained when a CLF terminal cost providing an incremental
upper bound on the infinite horizon cost-to-go is used [12, 13]. In both
of these cases monotonicity plays an important role in the arguments that
ensure stability of the receding horizon scheme. Such a monotonicity result
does not hold in the general case. Fortunately, uniform convergence of J7.(-)
to Ji () on I'?°, a key consequence of monotonicity, is in fact sufficient for
the task at hand. In this section, we take a different approach to show such
uniform convergence when V'(-) is merely an upper bound on J7_(-).

We begin by deriving a general upper bound of the difference between
finite and infinite horizon costs.

Lemma 5 Jj(z) — J3 (z) < V(25 (T;x)) for all T >0 and z € T*°.

Proof: The result follows easily by noting that

T
Jr(z) < /0 Q(750(75 ), uso (73 7)) dT+V (25 (T 7)) < Joo(2)+V (20T 7)) -
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In the case that the terminal cost is an upper bound on the infinite
horizon cost-to-go, we can also get a lower bound on the difference between
finite and infinite horizon costs.

We call a continuous function W (-) strictly increasing if it is proper and
its sublevel sets are strictly increasing with respect to set inclusion, that
is, W=((—o0,w1]) C W™((=o00,ws)) C W~L((—o00,ws]) for all w; < ws.
Examples of strictly increasing functions include J% () and differentiable
proper functions V(-), V(0) = 0, with VV (z) # 0 for all z € R* \ {0}. Much
like class K functions, strictly increasing functions provide a measure of the
distance of a point x from the global minimum of the function, often the
origin.

Lemma 6 Let r > 0 be given and suppose that the nonnegative C? function
V(:) is strictly increasing and such that V(z) > J% (z) for x € T'°. Then,
for any T >0, Jj(z) > Ji(z) for all z € TC.

Proof: Suppose, for the sake of contradiction, that this is not true. Then
there is an 1 € I'X° such that J3(zo) < J% (z¢) =: 3. We have

fo q(zh (T 1), wh (T3 2)) dT + V (24(T 7)) < Ji(30) = 78
< fo q(zp (15 2), uh (T3 2)) dT + T3 (27 (T )

so that V(z(T;x0)) < Ji(zh(T;5x0)) (with JZ (23.(T;z0)) possibly infi-
nite) which implies that z%.(T;z) ¢ T'2°. On the other hand, V (z5.(T; z0)) <
r2 < r2, which clearly is a contradiction since V () strictly increasing implies
that V(z) > r? on R* \ I'%°. a

The above lemmas enable us to show that the difference between the finite
and infinite horizon costs can be bounded according to

0 < Jr(z) = Joo(@) < V(25 (T 7))

over the set I'S°. If the mapping z — V(g{(T';x)) was continuous and
monotone (in fact, it’s really a set-valued mapping since there may be mul-
tiple optimal trajectories), we could apply Dini’s theorem to complete out
task.

It is clear that each infinite horizon trajectory must converge to the
origin. The following result shows that the T parametrized family of set

11



valued maps #» x5 (T'; z) (abusing notation) converges uniformly on com-
pact subsets of I'™ with respect to the strictly increasing function J% ().
We will thus obtain the desired uniform convergence of, for example, the T'
parametrized family of functions z +— SUpP, i 22 (z) V(XT3 7))-

Proposition 7 Letr > 0 and € > 0 be given. There is a T* < oo such that,
for any T > T,
Joo (250 (T3 7)) < € I3 ()

or all x € T'S°, where g(+;x) is any optimal trajectory.
T &%

Proof: Let z € ' be arbitrary and let z}(-;z) be any optimal trajec-
tory starting from z. Since the function t — J% (z3,(t;z)) is monotoni-
cally decreasing (by the principle of optimality), once gf(-;z) enters the
set I'™ eJz ( ) 1t remains there for all time. We will show that the first arrival
time of z* sol+3T) to the set TS, « () Can be uniformly bounded over all z € I'?°
(and all optimal trajectories from such z). Indeed, let t; be the first arrival
time of g{;z) to the set T'%), + (z)» SO that ||zt z)||> > © 5 Joo(z) for all
t € [0,t1] where b, is such that J% (z) < b||z||? for z € T (possible by
compactness). It follows that

Joo(®) 2 fo (@73 2) l(r; 7)) dr
z fo cqll@(m o) dr > 6% - J% (x)

which implies that ¢; < bT . The result follows by letting T = Tq O

With these results in hand, we can show that upper bound type terminal
costs also provide stabilization when the horizon is sufficiently long.

Theorem 8 Let r > 0 be given and suppose that the nonnegative C? func-
tion V() is strictly increasing, locally quadratically bounded, and such that
V(z) > Ji(z) for x € T°. For each § > 0, there is a T* < oo such that,
for any T > T*, the receding horizon scheme RH(T,d) is exponentially sta-
bilizing. Moreover, the set I‘fl_ , 1 > r with FT e I'e°, is contained in
the region of attraction of RH(T,J).

Proof: As in the proof of theorem 4, we will show that J}._;(-) can be used

as a Lyapunov function provided T is chosen sufficiently large. Once again,
the fundamental relation is

Jr_s(e1(6;2)) — Jr_5(2) < =J50(2) + Jr(2) — Jr_s(2) -
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Our task is then to show that, over I'?°, the difference Jj(z) — J5._,(x)
(with nonzero terminal cost) can be made uniformly small relative to the
(zero terminal cost) positive definite function J; ().

Since J5,(-), J5,(-), and V() can each be quadratically bounded from
above and below on the compact set I';°, there exist €;,e2 > 0 such that
edi(z) < iJg‘,O(x) and V(z) < eJi(z) for all z € T®. Now, using
proposition 7, choose T1 < oo so that J¥ (23 (T;z)) < e1/ez Ji (x) for all
T > T and all z € I';°. Then, noting that

1
V(25(T;2)) < e2Joo(250(T52)) < €15 (@) < 7 T50(2)
and using the upper bound provided by lemma 5, we see that
* * * * * * 1 *
|J1(2) = Jr_s(@)| < |7 (2) = Joo(@)] + [Jr_s(2) = Joo(2)] < 5T50(2)

foral T > T* := T, + ¢ and all z € I'?°. Exponential stability of RH (T, ¢)
over FZ?‘s follows. O

In what follows, by combining the results of this theorem together with
theorem 4, we will show that R (T, §) with a general terminal cost is stable
provided the horizon is sufficiently long.

5 Receding horizon control with a general termi-
nal cost

We are now ready to present our main result.

Theorem 9 Let r > 0 be given and suppose that the nonnegative C? ter-
minal cost function V(-) is locally quadratically bounded. For each § > 0,
there is a T* < oo such that, for any T > T*, the receding horizon scheme
RH(T,6) is exponentially stabilizing. Moreover, the set FZl"s with ]."Zwlf‘s C
', is contained in the region of attraction of RH(T,J).

Proof: TFor r > 0, let Vi(+) be a locally quadratic, strictly increasing C?
function that majorizes V() over R” and JX (-) over I'S° and denote by
J7} 1 (-) the optimal cost with V;(-) as terminal cost. It is then easy to show
that

Tio(@) < T () < Ty (a)

and hence that
|7 (z) — I (2)| < max{J5 (z) — J1 (), J11(2) — IS ()}

13



for all z € I's° so that J7(-) also converges uniformly to J% (-) with respect
to any locally quadratic positive definite function. The theorem follows
directly using the results and techniques of theorems 4 and 8. d

In each of the above theorems, the region of attraction is estimated by
a set of the form I‘,Tl_a. Intuitively, we expect that this set can be made as
large as we like by increasing the computation horizon 7T'. Indeed, suppose
that we would like the region of attraction to include the compact set 'y
(or any compact subset of I'°). By the uniform convergence of Jj ,(-) and
J71(-) (hence J7.(-)) to J,(-), it is clear that, given r > ry > 7o, there is a
T7 < oo such that

recritcrecri?crye

for all T > Ty. Since FZ;’I C Fgl C FTTI’O for all T' > 0, it is clear that the
region of attraction of the general terminal cost receding horizon scheme
can be made to include any compact subset of the infinite horizon region of
attraction.

Conclusion

The purpose of this paper was to demonstrate the stability of unconstrained
nonlinear receding horizon control with a general terminal cost and with-
out stability constraints. First, it was demonstrated that when the terminal
cost is zero, Dini’s theorem on uniform convergence of upper semicontinuous
functions can be used to show that there exists a finite horizon length that
guarantees stability of the receding horizon scheme for all points in an ap-
propriate sub-level set of a finite horizon cost. This result was then extended
to the case of a terminal cost that is an upper bound on the infinite horizon
cost to go. Finally, we showed that by combining these two results, the
stability of the receding horizon scheme can be guaranteed when a general
positive definite terminal cost is used.
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